login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281260 Triangular array of generalized Narayana numbers T(n,k) = 2*binomial(n+1,k)* binomial(n-2,k-1)/(n+1) for n >= 1 and 0 <= k <= n-1, read by rows. 4
1, 0, 2, 0, 2, 3, 0, 2, 8, 4, 0, 2, 15, 20, 5, 0, 2, 24, 60, 40, 6, 0, 2, 35, 140, 175, 70, 7, 0, 2, 48, 280, 560, 420, 112, 8, 0, 2, 63, 504, 1470, 1764, 882, 168, 9, 0, 2, 80, 840, 3360, 5880, 4704, 1680, 240, 10, 0, 2, 99, 1320, 6930, 16632, 19404, 11088, 2970, 330, 11, 0, 2, 120, 1980, 13200, 41580 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
The current array is the case m = 1 of the generalized Narayana numbers N_m(n,k) := (m+1)/(n+1)*binomial(n+1,k)*binomial(n-m-1,k-1) for m >= 0, n >= m and 0 <= k <= n-m with N_m(n,0) = A000007(n-m). Case m = 0 gives the table of Narayana numbers A001263 without leading column N_0(n,0) = A000007(n). For m = 2 see A281293, and for m = 3 see A281297. For combinatorial interpretations see the link to: David Callan, Generalized Narayana Numbers.
The polynomials p(m,n,x) = Sum_{k=0..n-m} N_m(n,k)*x^k satisfy the recurrence equation: x*p"(m,n,x) = n*(n-m-1)*p(m,n-1,x) for n > m >= 0 (p" is the second derivative of p), i.e.: k*(k-1)*N_m(n,k) = n*(n-m-1)*N_m(n-1,k-1) for k > 0 and n > m >= 0. Furthermore: Sum_{k=0..n-m} binomial(n+1-k,m+1)*N_m(n,k) = binomial(n,m)*A088218(n-m) for n >= m >= 0.
There is a relationship of these N_m(n,k) to those N_r(n,k) of A145596 (see the second comment): N_m(n+1,k) = N_r(n,k)*binomial(k+r,r)/binomial(n,r) for k >= 1 and 1 <= m = r <= n, and alternatively: N_r(n,k) = N_m(n+1,k)*binomial(n,m)/ binomial(k+m,m).
Conjecture: Sum_{k=1..n-m} binomial(n+1-k,m) * N_m(n,k) * A103365(n+1-m-k) = (m+1)^2 * A000007(n-m-1) for n > m >= 0.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows n = 1..150, flattened)
Vladimir Kruchinin, Dmitry Kruchinin, and Yuriy Shablya, On some properties of generalized Narayana numbers, Tomsk State University of Control Systems and Radioelectronics, (Tomsk, Russia 2019).
Feiyang Lin, F-polynomials for the R-Kronecker quiver, University of Minnesota, Research Experiences for Undergrads (2020).
Bo Wang and Candice X.T. Zhang, Interlacing property of a family of generating polynomials over Dyck paths, arXiv:2309.05903 [math.CO], 2023.
Yi Wang and Arthur L.B. Yang, Total positivity of Narayana matrices, arXiv:1702.07822 [math.CO], 2017.
FORMULA
Row sums are A033184(n+1,2).
The same triangle as A108838 with reversed rows but without leading column.
G.f.: ((x*y-x-1)*sqrt(x^2*y^2+(-2*x^2-2*x)*y+x^2-2*x+1)+x^2*y^2+(-2*x^2-2*x)*y+x^2+1)/(2*x). - Vladimir Kruchinin, Oct 11 2020
G.f. satisfies x*A(x,y)^2-(x^2*y^2+((-2)*x^2-2*x)*y+x^2+1)*A(x,y)+x=0. - Vladimir Kruchinin, Oct 11 2020
EXAMPLE
The triangle begins:
n\k: 0 1 2 3 4 5 6 7 8 9 10 11 . . .
01 : 1
02 : 0 2
03 : 0 2 3
04 : 0 2 8 4
05 : 0 2 15 20 5
06 : 0 2 24 60 40 6
07 : 0 2 35 140 175 70 7
08 : 0 2 48 280 560 420 112 8
09 : 0 2 63 504 1470 1764 882 168 9
10 : 0 2 80 840 3360 5880 4704 1680 240 10
11 : 0 2 99 1320 6930 16632 19404 11088 2970 330 11
12 : 0 2 120 1980 13200 41580 66528 55440 23760 4950 440 12
etc.
MATHEMATICA
Table[2 Binomial[n + 1, k] Binomial[n - 2, k - 1]/(n + 1), {n, 1, 12}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Jan 19 2017 *)
CROSSREFS
Sequence in context: A265583 A339754 A238156 * A182406 A160706 A087509
KEYWORD
nonn,tabl,easy
AUTHOR
Werner Schulte, Jan 18 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 01:40 EDT 2024. Contains 371696 sequences. (Running on oeis4.)