login
A281261
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
1
1, 2, 2, 1, 5, 2, 5, 9, 2, 1, 15, 14, 2, 7, 35, 20, 2, 1, 28, 70, 27, 2, 9, 84, 126, 35, 2, 1, 45, 210, 210, 44, 2, 11, 165, 462, 330, 54, 2, 1, 66, 495, 924, 495, 65, 2, 13, 286, 1287, 1716, 715, 77, 2, 1, 91, 1001, 3003, 3003, 1001, 90, 2, 15, 455, 3003, 6435, 5005, 1365, 104, 2, 1, 120, 1820, 8008, 12870, 8008, 1820, 119, 2
OFFSET
1,2
COMMENTS
Row n>1 contains floor((n+3)/2) terms.
LINKS
Gheorghe Coserea, Rows n = 1..202, flattened
F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
FORMULA
A(x;t) = Sum{n>=1} P_n(t)*x^n = x*((1-t)*x^3 + (t^2-2*t-1)*x^2 + (2*t-1)*x + 1)/((t-1)*x^3 + (3-t)*x^2 - 3*x + 1).
A278457(x;t) = serreverse(A(-x;t))(-x).
A151821(n) = P_n(1), A213667(n) = P_n(2).
P_n(t^2) = ((1+t)^(n+1) + (1-t)^(n+1))/2 - t^2 + 1, for n>1.
EXAMPLE
A(x;t) = x + (2*t+2)*x^2 + (t^2+5*t+2)*x^3 + (5*t^2+9*t+2)*x^4 + ...
Triangle starts:
n\k [1] [2] [3] [4] [5] [6] [7] [8]
[1] 1;
[2] 2, 2;
[3] 1, 5, 2;
[4] 5, 9, 2;
[5] 1, 15, 14, 2;
[6] 7, 35, 20, 2;
[7] 1, 28, 70, 27, 2;
[8] 9, 84, 126, 35, 2;
[9] 1, 45, 210, 210, 44, 2;
[10] 11, 165, 462, 330, 54, 2;
[11] 1, 66, 495, 924, 495, 65, 2;
[12] 13, 286, 1287, 1716, 715, 77, 2;
[13] 1, 91, 1001, 3003, 3003, 1001, 90, 2;
[14] 15, 455, 3003, 6435, 5005, 1365, 104, 2;
[15] ...
MATHEMATICA
Reverse[CoefficientList[#, t]]& /@ CoefficientList[x*((1-t)*x^3 + (t^2 - 2*t - 1)*x^2 + (2*t - 1)*x + 1)/((t-1)*x^3 + (3-t)*x^2 - 3*x + 1) + O[x]^16, x] // Rest // Flatten (* Jean-François Alcover, Feb 18 2019 *)
PROG
(PARI)
N=16; x='x+O('x^N); concat(apply(p->Vec(p), Vec(Ser(x*((1-t)*x^3 + (t^2-2*t-1)*x^2 + (2*t-1)*x + 1)/((t-1)*x^3 + (3-t)*x^2 - 3*x + 1)))))
(PARI)
N = 14; concat(1, concat(vector(N, n, Vec(substpol(((1+t)^(n+2) + (1-t)^(n+2))/2 - t^2 + 1, t^2, t)))))
CROSSREFS
Sequence in context: A123398 A277495 A188945 * A102849 A088333 A016538
KEYWORD
nonn,tabf
AUTHOR
Gheorghe Coserea, Jan 18 2017
STATUS
approved