OFFSET
1,2
LINKS
Gheorghe Coserea, Rows n = 1..101, flattened
F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
FORMULA
y(x) = Sum {n>=1} P_n(t)*x^n satisfies x = y*((t-1)*y^3 + (t^2-2*t-1)*y^2 - (2*t-1)*y + 1)/((1-t)*y^3 + (3-t)*y^2 + 3*y + 1), with y(0)=0, y'(0)=1, where P_n(t) is the degree n-1 polynomial associated with row n of the triangle in order of decreasing powers of t.
EXAMPLE
A(x;t) = x + (2*t+2)*x^2 + (7*t^2+11*t+6)*x^3 + (30*t^3+65*t^2+59*t+22)*x^4 + ...
Triangle starts:
n\k [1] [2] [3] [4] [5] [6] [7] [8]
[1] 1;
[2] 2, 2;
[3] 7, 11, 6;
[4] 30, 65, 59, 22;
[5] 143, 397, 492, 318, 90;
[6] 728, 2471, 3857, 3430, 1728, 394;
[7] 3876, 15572, 29255, 32728, 22886, 9461, 1806;
[8] 21318, 99009, 217323, 291456, 257001, 148626, 52133, 8558;
[9] ...
MATHEMATICA
Reverse[CoefficientList[#, t]]& /@ CoefficientList[InverseSeries[x ((t - 1) x^3 + (t^2 - 2t - 1) x^2 - (2t - 1) x + 1)/((1 - t) x^3 + (3 - t) x^2 + 3x + 1) + O[x]^11], x] // Flatten (* Jean-François Alcover, Sep 28 2019 *)
PROG
(PARI)
N=11; x ='x + O('x^N);
concat(apply(p->Vec(p), Vec(serreverse(Ser(x*((t-1)*x^3 + (t^2-2*t-1)*x^2 - (2*t-1)*x+1)/((1-t)*x^3 + (3-t)*x^2 + 3*x + 1), 'x)))))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gheorghe Coserea, Jan 15 2017
STATUS
approved