login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281297
Triangular array of generalized Narayana numbers T(n,k) = 4*binomial(n+1,k)* binomial(n-4,k-1)/(n+1) for n >= 3 and 0 <= k <= n-3, read by rows.
2
1, 0, 4, 0, 4, 10, 0, 4, 24, 20, 0, 4, 42, 84, 35, 0, 4, 64, 224, 224, 56, 0, 4, 90, 480, 840, 504, 84, 0, 4, 120, 900, 2400, 2520, 1008, 120, 0, 4, 154, 1540, 5775, 9240, 6468, 1848, 165, 0, 4, 192, 2464, 12320, 27720, 29568, 14784, 3168, 220, 0, 4, 234, 3744, 24024, 72072, 108108, 82368, 30888, 5148
OFFSET
3,3
COMMENTS
The current array is the case m = 3 of the generalized Narayana numbers N_m(n,k) := (m+1)/(n+1)*binomial(n+1,k)*binomial(n-m-1,k-1) for m >= 0, n >= m and 0 <= k <= n-m with N_m(n,0) = A000007(n-m). Case m = 0 gives the table of Narayana numbers A001263 without leading column N_0(n,0) = A000007(n). For m = 1 see A281260, and for m = 2 see A281293.
FORMULA
Row sums are A033184(n+1,4).
G.f.: A(x) = x*A281260(x,y)^2. - Vladimir Kruchinin, Oct 10 2020
EXAMPLE
The triangle begins:
n\k: 0 1 2 3 4 5 6 7 8 9 10 . . .
03 : 1
04 : 0 4
05 : 0 4 10
06 : 0 4 24 20
07 : 0 4 42 84 35
08 : 0 4 64 224 224 56
09 : 0 4 90 480 840 504 84
10 : 0 4 120 900 2400 2520 1008 120
11 : 0 4 154 1540 5775 9240 6468 1848 165
12 : 0 4 192 2464 12320 27720 29568 14784 3168 220
13 : 0 4 234 3744 24024 72072 108108 82368 30888 5148 286
etc.
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Werner Schulte, Jan 19 2017
STATUS
approved