login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184185 Number of permutations of {1,2,...,n} having no cycles of the form (i, i+1, i+2, ..., i+j-1) (j >= 1). 3
1, 0, 0, 1, 6, 34, 216, 1566, 12840, 117696, 1193760, 13280520, 160841520, 2107021680, 29689833600, 447821503920, 7199590366080, 122907276334080, 2220524598297600, 42328747652446080, 849064844592518400, 17877531486897734400, 394246607165708774400 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
a(n) = A184184(n,0).
LINKS
Patxi Laborde Zubieta, Occupied corners in tree-like tableaux, arXiv preprint arXiv:1505.06098 [math.CO], 2015.
FORMULA
G.f.: (1-z)*F(z-z^2), where F(z) = Sum_{j>=0} j!z^j (private communication from Vladeta Jovovic, May 26 2009).
a(n) = Sum_{i=ceiling((n-1)/2)..n} (-1)^(n-i)*i!*binomial(i+1,n-i).
G.f.: 1/Q(0), where Q(k) = 1 + x/(1-x) - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) ~ n! / exp(1) * (1 - 1/n - 1/(2*n^2) - 2/(3*n^3) - 23/(24*n^4) - 151/(120*n^5) - 119/(720*n^6) + 14789/(1260*n^7) + 1223843/(13440*n^8) + ...). - Vaclav Kotesovec, Nov 30 2021
From Seiichi Manyama, Nov 30 2021: (Start)
a(n) = (n+2) * a(n-1) - 2 * (n-1) * a(n-2) + (n-2) * a(n-3) for n > 2.
G.f.: Sum_{k>=0} k! * x^k * (1 - x)^(k+1). (End)
EXAMPLE
a(4)=6 because we have (13)(24), (1432), (1342), (1423), (1243), and (1324).
MAPLE
a := proc(n) add((-1)^(n-i)*factorial(i)*binomial(i+1, n-i), i = ceil((1/2)*n-1/2) .. n) end proc: seq(a(n), n = 0 .. 22);
MATHEMATICA
a[n_] := Sum[(-1)^(n-i)*i!*Binomial[i+1, n-i], {i, Ceiling[(n-1)/2], n}];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Nov 29 2017, from Maple *)
PROG
(PARI) a(n) = sum(k=n\2, n, (-1)^(n-k)*k!*binomial(k+1, n-k)); \\ Seiichi Manyama, Nov 30 2021
(PARI) a(n) = if(n<3, 0^n, (n+2)*a(n-1)-2*(n-1)*a(n-2)+(n-2)*a(n-3)); \\ Seiichi Manyama, Nov 30 2021
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, k!*x^k*(1-x)^(k+1))) \\ Seiichi Manyama, Nov 30 2021
CROSSREFS
Sequence in context: A218893 A266431 A063090 * A216317 A230331 A267242
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 16 2011 (based on communication from Vladeta Jovovic)
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 16:47 EST 2023. Contains 367525 sequences. (Running on oeis4.)