

A173878


Number of sixdimensional simplical toric diagrams with hypervolume n.


3



1, 3, 7, 23, 19, 65, 46, 202, 156, 281, 183, 972, 333, 903, 1029, 2507, 912
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Also gives the number of distinct abelian orbifolds of C^7/Gamma, Gamma in SU(7).


LINKS

Table of n, a(n) for n=1..17.
Gabriele Balletti, Dataset of "small" lattice polytopes
J. Davey, A. Hanany and R. K. Seong, Counting Orbifolds, J. High Energ. Phys. (2010) 2010: 10; arXiv:1002.3609 [hepth], 2010.
A. Hanany and R. K. Seong, Symmetries of abelian orbifolds, J. High Energ. Phys. (2011) 2011: 27; arXiv:1009.3017 [hepth], 20102011.
Andrey Zabolotskiy, Coweight lattice A^*_n and lattice simplices, arXiv:2003.10251 [math.CO], 2020.


CROSSREFS

Cf. A003051 (No. of twodimensional triangular toric diagrams of area n), A045790 (No. of threedimensional tetrahedral toric diagrams of volume n), A173824 (No. of fourdimensional simplical toric diagrams of hypervolume n), A173877 (No. of fivedimensional simplical toric diagrams of hypervolume n).
Sequence in context: A229438 A069505 A355075 * A225264 A032403 A072584
Adjacent sequences: A173875 A173876 A173877 * A173879 A173880 A173881


KEYWORD

nonn,more


AUTHOR

RakKyeong Seong (rakkyeong.seong(AT)imperial.ac.uk), Mar 01 2010


EXTENSIONS

a(8)a(16) from Balletti's data and a(17) from Table 15 of Hanany & Seong 2011 added by Andrey Zabolotskiy, Mar 13 2020


STATUS

approved



