|
|
A173878
|
|
Number of six-dimensional simplical toric diagrams with hypervolume n.
|
|
3
|
|
|
1, 3, 7, 23, 19, 65, 46, 202, 156, 281, 183, 972, 333, 903, 1029, 2507, 912
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also gives the number of distinct abelian orbifolds of C^7/Gamma, Gamma in SU(7).
|
|
LINKS
|
Table of n, a(n) for n=1..17.
Gabriele Balletti, Dataset of "small" lattice polytopes
J. Davey, A. Hanany and R. K. Seong, Counting Orbifolds, J. High Energ. Phys. (2010) 2010: 10; arXiv:1002.3609 [hep-th], 2010.
A. Hanany and R. K. Seong, Symmetries of abelian orbifolds, J. High Energ. Phys. (2011) 2011: 27; arXiv:1009.3017 [hep-th], 2010-2011.
Andrey Zabolotskiy, Coweight lattice A^*_n and lattice simplices, arXiv:2003.10251 [math.CO], 2020.
|
|
CROSSREFS
|
Cf. A003051 (No. of two-dimensional triangular toric diagrams of area n), A045790 (No. of three-dimensional tetrahedral toric diagrams of volume n), A173824 (No. of four-dimensional simplical toric diagrams of hypervolume n), A173877 (No. of five-dimensional simplical toric diagrams of hypervolume n).
Sequence in context: A229438 A069505 A355075 * A225264 A032403 A072584
Adjacent sequences: A173875 A173876 A173877 * A173879 A173880 A173881
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Rak-Kyeong Seong (rak-kyeong.seong(AT)imperial.ac.uk), Mar 01 2010
|
|
EXTENSIONS
|
a(8)-a(16) from Balletti's data and a(17) from Table 15 of Hanany & Seong 2011 added by Andrey Zabolotskiy, Mar 13 2020
|
|
STATUS
|
approved
|
|
|
|