login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173881
Triangle T(n,k) = k*binomial(n,k)*binomial(n-1,k) with T(n,0) = T(n,n) = 1, read by rows.
1
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 12, 36, 12, 1, 1, 20, 120, 120, 20, 1, 1, 30, 300, 600, 300, 30, 1, 1, 42, 630, 2100, 2100, 630, 42, 1, 1, 56, 1176, 5880, 9800, 5880, 1176, 56, 1, 1, 72, 2016, 14112, 35280, 35280, 14112, 2016, 72, 1, 1, 90, 3240, 30240, 105840, 158760, 105840, 30240, 3240, 90, 1
OFFSET
0,5
FORMULA
T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j=2..n} j*(j-1) with c(0) = c(1) = 1.
From G. C. Greubel, Apr 17 2021: (Start)
T(n,k) = k*binomial(n,k)*binomial(n-1,k) with T(n,0) = T(n,n) = 1.
Sum_{k=0..n} T(n,k) = 2*(2*n-3)*binomial(2*n-4, n-2) + 2 - [n=0] = 2 + 2A002457(n-2) - [n=0]. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 6, 6, 1;
1, 12, 36, 12, 1;
1, 20, 120, 120, 20, 1;
1, 30, 300, 600, 300, 30, 1;
1, 42, 630, 2100, 2100, 630, 42, 1;
1, 56, 1176, 5880, 9800, 5880, 1176, 56, 1;
1, 72, 2016, 14112, 35280, 35280, 14112, 2016, 72, 1;
1, 90, 3240, 30240, 105840, 158760, 105840, 30240, 3240, 90, 1;
...
MATHEMATICA
T[n_, k_]:= If[k==0 || k==n, 1, k*Binomial[n, k]*Binomial[n-1, k]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 17 2021 *)
PROG
(Magma)
T:= func< n, k | k eq 0 or k eq n select 1 else k*Binomial(n, k)*Binomial(n-1, k) >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 17 2021
(Sage)
def T(n, k): return 1 if (k==0 or k==n) else k*binomial(n, k)*binomial(n-1, k)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 17 2021
CROSSREFS
Sequence in context: A155864 A145903 A223257 * A329228 A172373 A174411
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 01 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 17 2021
STATUS
approved