OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j=2..n} j*(j-1) with c(0) = c(1) = 1.
From G. C. Greubel, Apr 17 2021: (Start)
T(n,k) = k*binomial(n,k)*binomial(n-1,k) with T(n,0) = T(n,n) = 1.
Sum_{k=0..n} T(n,k) = 2*(2*n-3)*binomial(2*n-4, n-2) + 2 - [n=0] = 2 + 2A002457(n-2) - [n=0]. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 6, 6, 1;
1, 12, 36, 12, 1;
1, 20, 120, 120, 20, 1;
1, 30, 300, 600, 300, 30, 1;
1, 42, 630, 2100, 2100, 630, 42, 1;
1, 56, 1176, 5880, 9800, 5880, 1176, 56, 1;
1, 72, 2016, 14112, 35280, 35280, 14112, 2016, 72, 1;
1, 90, 3240, 30240, 105840, 158760, 105840, 30240, 3240, 90, 1;
...
MATHEMATICA
T[n_, k_]:= If[k==0 || k==n, 1, k*Binomial[n, k]*Binomial[n-1, k]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 17 2021 *)
PROG
(Magma)
T:= func< n, k | k eq 0 or k eq n select 1 else k*Binomial(n, k)*Binomial(n-1, k) >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 17 2021
(Sage)
def T(n, k): return 1 if (k==0 or k==n) else k*binomial(n, k)*binomial(n-1, k)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 17 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 01 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 17 2021
STATUS
approved