login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173884
Double q-form product triangle:q=2;c(n,q)=Product[(1 - q^i)*(1 - q^(i - 1)), {i, 2, n}];t(n,m,q)=c(n,q)/(c(m,q)*c(n-m,q))
0
1, 1, 1, 1, 3, 1, 1, 21, 21, 1, 1, 105, 735, 105, 1, 1, 465, 16275, 16275, 465, 1, 1, 1953, 302715, 1513575, 302715, 1953, 1, 1, 8001, 5208651, 115334415, 115334415, 5208651, 8001, 1, 1, 32385, 86370795, 8032483935, 35572428855, 8032483935
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 5, 44, 947, 33482, 2122913, 241102136, 51810203087, 21011300238182,
16612823490798845,...}.
FORMULA
q=2;
c(n,q)=Product[(1 - q^i)*(1 - q^(i - 1)), {i, 2, n}];
t(n,m,q)=c(n,q)/(c(m,q)*c(n-m,q))
EXAMPLE
{1},
{1, 1},
{1, 3, 1},
{1, 21, 21, 1},
{1, 105, 735, 105, 1},
{1, 465, 16275, 16275, 465, 1},
{1, 1953, 302715, 1513575, 302715, 1953, 1},
{1, 8001, 5208651, 115334415, 115334415, 5208651, 8001, 1},
{1, 32385, 86370795, 8032483935, 35572428855, 8032483935, 86370795, 32385, 1},
{1, 130305, 1406642475, 535930782975, 9968312563335, 9968312563335, 535930782975, 1406642475, 130305, 1},
{1, 522753, 22705776555, 35015551130175, 2668184996119335, 11206376983701207, 2668184996119335, 35015551130175, 22705776555, 522753, 1}
MATHEMATICA
Clear[t, n, m, c, q];
c[n_, q_]=Product[(1-q^i)*(1-q^(i-1)), {i, 2, n}];
t[n_, m_, q_]=c[n, q]/(c[m, q]*c[n-m, q]);
Table[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}], {q, 2, 12}];
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
CROSSREFS
Sequence in context: A212855 A016561 A111382 * A176418 A156950 A083998
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Mar 01 2010
STATUS
approved