login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118800 Triangle read by rows: T satisfies the matrix products: C*T*C = T^-1 and T*C*T = C^-1, where C is Pascal's triangle. 14
1, 1, -1, 2, -3, 1, 4, -8, 5, -1, 8, -20, 18, -7, 1, 16, -48, 56, -32, 9, -1, 32, -112, 160, -120, 50, -11, 1, 64, -256, 432, -400, 220, -72, 13, -1, 128, -576, 1120, -1232, 840, -364, 98, -15, 1, 256, -1280, 2816, -3584, 2912, -1568, 560, -128, 17, -1, 512, -2816, 6912, -9984, 9408, -6048, 2688, -816, 162, -19, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
The matrix square, T^2, consists of columns that are all the same.
Matrix inverse is triangle A118801. Row sums form {0^n, n>=0}.
Unsigned row sums equal A025192(n) = 2*3^(n-1), n>=1.
Row squared sums equal A051708.
Antidiagonal sums equals all 1's.
Unsigned antidiagonal sums form A078057 (with offset).
Antidiagonal squared sums form A002002(n) = Sum_{k=0..n-1} C(n,k+1)*C(n+k,k), n>=1.
From Paul Barry, Nov 10 2008: (Start)
T is [1,1,0,0,0,...] DELTA [ -1,0,0,0,0,...] or C(1,n) DELTA -C(0,n). (DELTA defined in A084938).
The positive matrix T_p is [1,1,0,0,0,...] DELTA [1,0,0,0,0,...]. T_p*C^-1 is
[0,1,0,0,0,....] DELTA [1,0,0,0,0,...] which is C(n-1,k-1) for n,k>=1. (End)
The triangle formed by deleting the minus signs is the mirror of the self-fusion of Pascal's triangle; see Comments at A081277 and A193722. - Clark Kimberling, Aug 04 2011
Riordan array ( (1 - x)/(1 - 2*x), -x/(1 - 2*x) ). Cf. A209149. The matrix square is the Riordan array ( (1 - x)^2/(1 - 2*x), x ), which belongs to the Appell subgroup of the Riordan group. See the Example section below. - Peter Bala, Jul 17 2013
From Peter Bala, Feb 23 2019: (Start)
There is a 1-parameter family of solutions to the simultaneous equations C*T*C = T^-1 and T*C*T = C^-1, where C is Pascal's triangle. Let T(k) denote the Riordan array ( (1 - k*x)/(1 - (k + 1)*x), -x/(1 - (k + 1)*x) ) so that T(1) = T. Then C*T(k)*C = T(k)^-1 and T(k)*C*T(k) = C^-1, for arbitrary k. For arbitrary m, the Riordan arrays (T(k)*C^m)^2 and (C^m*T(k))^2 both belong to the Appell subgroup of the Riordan group.
More generally, given a fixed m, we can ask for a lower triangular array X solving the simultaneous equations (C^m)*X*(C^m) = X^-1 and X*(C^m)*X = C^(-m). A 1-parameter family of solutions is given by the Riordan arrays X = ( (1 - m*k*x)/(1 - m*(k + 1)*x), -x/(1 - m*(k + 1)*x) ). The Riordan arrays X^2 , (X*C^n)^2 and (C^n*X)^2, for arbitrary n, all belong to the Appell subgroup of the Riordan group. (End)
LINKS
Florian Luca, Attila Pethő, and László Szalay, Duplications in the k-generalized Fibonacci sequences, New York J. Math. (2021) Vol. 27, 1115-1133.
FORMULA
T(n,k) = (-1)^k * 2^(n-k) * ( C(n,k) + C(n-1,k-1) )/2 for n>=k>=0 with T(0,0) = 1. Antidiagonals form the coefficients of Chebyshev polynomials: T(n,k) = [x^(2*n)] [(1+sqrt(1-x^2))^(n+k) + (1-sqrt(1-x^2))^(n+k)]/2.
Rows of the triangle are generated by taking successive iterates of (A135387)^n * [1, 1, 0, 0, 0, ...]. - Gary W. Adamson, Dec 09 2007
O.g.f.: (1 - t)/(1 + t*(x - 2)) = 1 + (1 - x)*t + (2 - 3*x + x^2)^t^2 + (4 - 8*x + 5*x^2 - x^3)*t^3 + .... Row polynomial R(n,x) = (1 - x)*(2 - x)^(n-1) for n >= 1. - Peter Bala, Jul 17 2013
T(n,k)=2*T(n-1,k)-T(n-1,k-1) with T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 25 2013
G.f. for row n (n>=1): Sum_{k=0..n} T(n,k)*x^k = (1-x)*(2-x)^(n-1). - Philippe Deléham, Nov 25 2013
From Tom Copeland, Nov 15 2016: (Start)
E.g.f. is [1 + (1-x)e^((2-x)t)]/(2-x), so the row polynomials are p_n(x) = (1-q,(x))^n, umbrally, where (q.(x))^k = q_k(x) are the row polynomials of A239473, or, equivalently, T = M*A239473, where M is the inverse Pascal matrix C^(-1) = A130595 with the odd rows negated, i.e., M(n,k) = (-1)^n C^(-1)(n,k) with e.g.f. exp[(1-x)t]. Cf. A200139: A200139(n,k) = (-1)^k* A118800(n,k).
TCT = C^(-1) = A130595 and A239473 = A000012*C^(-1) = S*C^(-1) imply (M*S)^2 = Identity matrix, i.e., M*S = (M*S)^(-1) = S^(-1)*M^(-1) = A167374*M^(-1). Note that M = M^(-1). Cf. A097805. (End)
EXAMPLE
Triangle begins:
1;
1, -1;
2, -3, 1;
4, -8, 5, -1;
8, -20, 18, -7, 1;
16, -48, 56, -32, 9, -1;
32, -112, 160, -120, 50, -11, 1;
64, -256, 432, -400, 220, -72, 13, -1;
128, -576, 1120, -1232, 840, -364, 98, -15, 1;
256, -1280, 2816, -3584, 2912, -1568, 560, -128, 17, -1;
512, -2816, 6912, -9984, 9408, -6048, 2688, -816, 162, -19, 1;
1024, -6144, 16640, -26880, 28800, -21504, 11424, -4320, 1140, -200, 21, -1;
...
The matrix square, T^2, equals:
1;
0, 1;
1, 0, 1;
2, 1, 0, 1;
4, 2, 1, 0, 1;
8, 4, 2, 1, 0, 1;
16, 8, 4, 2, 1, 0, 1;
32, 16, 8, 4, 2, 1, 0, 1;
64, 32, 16, 8, 4, 2, 1, 0, 1; ...
where all columns are the same.
MATHEMATICA
(* This program generates A118800 as the mirror of the self-fusion of Pascal's triangle. *)
z = 8; a = 1; b = 1; c = 1; d = 1;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, 0];
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, _] = 1;
g[n_] := CoefficientList[w[n, -x], x];
TableForm[Table[Reverse[Abs@g[n]], {n, -1, z}]]
Flatten[Table[Reverse[Abs@g[n]], {n, -1, z}]] (* A081277 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A118800 *)
(* Clark Kimberling, Aug 04 2011 *)
T[ n_, k_] := If[ n<0 || k<0, 0, (-1)^k 2^(n-k) (Binomial[ n, k] + Binomial[ n-1, n-k)) / 2; (* Michael Somos, Nov 25 2016 *)
PROG
(PARI) {T(n, k)=if(n==0&k==0, 1, (-1)^k*2^(n-k)*(binomial(n, k)+binomial(n-1, k-1))/2)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* Chebyshev Polynomials as Antidiagonals: */
{T(n, k)=local(Ox=x*O(x^(2*k))); polcoeff(((1+sqrt(1-x^2+Ox))^(n+k)+(1-sqrt(1-x^2+Ox))^(n+k))/2, 2*k, x)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
(Sage) # uses[riordan_square from A321620]
# Computes the unsigned triangle.
riordan_square((1-x)/(1-2*x), 8) # Peter Luschny, Jan 03 2019
CROSSREFS
Cf. A118801 (inverse), A025192 (unsigned row sums), A051708 (row squared sums), A078057 (unsigned antidiagonal sums), A002002 (antidiagonal squared sums).
Sequence in context: A179738 A187889 A353593 * A200139 A321621 A321629
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, May 02 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 10:11 EDT 2024. Contains 371935 sequences. (Running on oeis4.)