

A005480


Decimal expansion of cube root of 4.
(Formerly M3771)


12



1, 5, 8, 7, 4, 0, 1, 0, 5, 1, 9, 6, 8, 1, 9, 9, 4, 7, 4, 7, 5, 1, 7, 0, 5, 6, 3, 9, 2, 7, 2, 3, 0, 8, 2, 6, 0, 3, 9, 1, 4, 9, 3, 3, 2, 7, 8, 9, 9, 8, 5, 3, 0, 0, 9, 8, 0, 8, 2, 8, 5, 7, 6, 1, 8, 2, 5, 2, 1, 6, 5, 0, 5, 6, 2, 4, 2, 1, 9, 1, 7, 3, 2, 7, 3, 5, 4, 4, 2, 1, 3, 2, 6, 2, 2, 2, 0, 9, 5, 7, 0, 2, 2, 9, 3, 4, 7, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Let h = 4^(1/3). Then (h+1,0) is the xintercept of the shortest segment from the xaxis through (1,2) to the yaxis; see A197008.  Clark Kimberling, Oct 10 2011


REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Horace S. Uhler, Manyfigure approximations for cubed root of 2, cubed root of 3, cubed root of 4, and cubed root of 9 with chi2 data, Scripta Math. 18, (1952), p. 173176.


LINKS

Harry J. Smith, Table of n, a(n) for n = 1..20000
Horace S. Uhler, Manyfigure approximations for cubed root of 2, cubed root of 3, cubed root of 4, and cubed root of 9 with chi2 data, Scripta Math. 18, (1952). 173176. [Annotated scanned copies of pages 175 and 176 only]


EXAMPLE

1.587401051968199474751705639272308260391493327899853...


MATHEMATICA

RealDigits[N[4^(1/3), 200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)


PROG

(PARI) { default(realprecision, 20080); x=4^(1/3); for (n=1, 20000, d=floor(x); x=(xd)*10; write("b005480.txt", n, " ", d)); } \\ Harry J. Smith, May 07 2009, with a correction made May 19 2009


CROSSREFS

Cf. A002947 (continued fraction).  Harry J. Smith, May 07 2009
Sequence in context: A133731 A021067 A047914 * A204921 A021867 A165909
Adjacent sequences: A005477 A005478 A005479 * A005481 A005482 A005483


KEYWORD

nonn,cons,easy


AUTHOR

N. J. A. Sloane; entry revised Apr 23 2006


STATUS

approved



