This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098316 Decimal expansion of [3, 3, ...] = (3 + sqrt(13))/2. 26
 3, 3, 0, 2, 7, 7, 5, 6, 3, 7, 7, 3, 1, 9, 9, 4, 6, 4, 6, 5, 5, 9, 6, 1, 0, 6, 3, 3, 7, 3, 5, 2, 4, 7, 9, 7, 3, 1, 2, 5, 6, 4, 8, 2, 8, 6, 9, 2, 2, 6, 2, 3, 1, 0, 6, 3, 5, 5, 2, 2, 6, 5, 2, 8, 1, 1, 3, 5, 8, 3, 4, 7, 4, 1, 4, 6, 5, 0, 5, 2, 2, 2, 6, 0, 2, 3, 0, 9, 5, 4, 1, 0, 0, 9, 2, 4, 5, 3, 5, 8, 8, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For reasons following from the formula section, this constant could be called "the bronze ratio". For this, compare with A001622 and A014176. If c is this constant and n > 0, then for n even, c^n = [A100230(n), 1, A100230(n)-1, 1, A100230(n)-1, 1, A100230(n)-1, 1, ...], for n odd, c^n = [A100230(n)+1, A100230(n)+1, A100230(n)+1, ...]. - Gerald McGarvey, Dec 15 2007 This is the shape of a 3-extension rectangle; see A188640 for definitions. - Clark Kimberling, Apr 10 2011 From Vladimir Shevelev, Mar 02 2013 (Start) An analog of Fermat theorem: for prime p, round(c^p) == 3 (mod p). A generalization for "metallic" constants c_N = (N+sqrt(N^2+4))/2, N>=1: for prime p, round((c_N)^p) == N (mod p). (End) LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 Wikipedia, Metallic mean FORMULA 3 plus the constant in A085550. - R. J. Mathar, Sep 02 2008 From Hieronymus Fischer, Jan 02 2009 (Start): Set c:=(3+sqrt(13))/2. Then the fractional part of c^n equals 1/c^n, if n odd. For even n, the fractional part of c^n is equal to 1-(1/c^n). c:=(3+sqrt(13))/2 satisfies c-c^(-1)=floor(c)=3, hence c^n + (-c)^(-n) = round(c^n) for n>0, which follows from the general formula of A001622. 1/c=(sqrt(13)-3)/2. See A001622 for a general formula concerning the fractional parts of powers of numbers x>1, which satisfy x-x^(-1)=floor(x). Other examples of constants x satisfying the relation x-x^(-1)=floor(x) include A001622 (the golden ratio: where floor(x)=1) and A014176 (the silver ratio: where floor(x)=2). c=3+sum{k>=1}(-1)^(k-1)/(A006190(k)*A006190(k+1)). - Vladimir Shevelev, Feb 23 2013 A generalization for "metallic" constants c_N = (N+sqrt(N^2+4))/2, N>=1. Let {A_N(n), n>=0} be the sequence 0, 1, N, N^2+1, N^3+2*N, N^4+3*N^2+1,..., a(N) = N*a(N-1) + a(N-2). Then c_N = N + sum_{n>=1} (-1)^(n-1)/(A_N(n)*A_N(n+1)) (cf. A001622, A014176, A098316, A098317, A098318). - Vladimir Shevelev, Feb 23 2013 EXAMPLE 3.30277563... MATHEMATICA RealDigits[(3 + Sqrt[13])/2, 10, 100][[1]] (* G. C. Greubel, Apr 16 2017 *) PROG (PARI) (3 + sqrt(13))/2 \\ Charles R Greathouse IV, Jul 24 2013 CROSSREFS Cf. A001622, A014176, A098317, A098318, A000032, A006497, A080039. Sequence in context: A010607 A118522 A179119 * A160165 A084055 A084103 Adjacent sequences:  A098313 A098314 A098315 * A098317 A098318 A098319 KEYWORD nonn,cons,easy AUTHOR Eric W. Weisstein, Sep 02 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 19 07:51 EDT 2018. Contains 313857 sequences. (Running on oeis4.)