OFFSET
1,1
COMMENTS
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..245
Nicolas Basset, Counting and generating permutations in regular classes of permutations, HAL Id: hal-01093994, 2014.
D. E. Knuth, Whirlpool Permutations, May 05 2020.
Jiaxi Lu and Yuanzhe Ding, A skeleton model to enumerate standard puzzle sequences, arXiv:2106.09471 [math.CO], 2021.
FORMULA
Basset (2014, Eq. (4)) gives a g.f.
a(n) = (2n)! [z^(2n)] 2*sqrt(2)*z*(exp(sqrt(2)*z)-1) / (2+sqrt(2)*z + (2-sqrt(2)*z)*exp(sqrt(2)*z)). - Alois P. Heinz, Sep 06 2015
MAPLE
egf:= 2*(x->1/(1-x*tanh(x))-1)(z/sqrt(2)):
a:= n-> (2*n)!*coeff(series(egf, z, 2*n+1), z, 2*n):
seq(a(n), n=1..20); # Alois P. Heinz, Sep 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 05 2015
EXTENSIONS
More terms from Alois P. Heinz, Sep 06 2015
Name corrected by Don Knuth. - N. J. A. Sloane, May 06 2020
STATUS
approved