login
A261683
Number of permutations p of {1..2n} such that p[2k-1]<p[2k] <=> p[2k]<p[2k+1].
6
2, 8, 84, 1632, 51040, 2340480, 147985824, 12338740736, 1311694023168, 173163464017920, 27793189979315200, 5329882370469617664, 1203569385876087300096, 316106247473967737765888, 95541594110304706706657280, 32926404311225961897742172160
OFFSET
1,1
COMMENTS
The relation between p[2n-1] and p[2n] is arbitrary; hence a(n) = 2*n*A122647(n). a(n) is also (surprisingly) the number of 2 X n whirlpool permutations (see link, also A334518). - Don Knuth, May 06 2020.
LINKS
D. E. Knuth, Whirlpool Permutations, May 05 2020.
Jiaxi Lu and Yuanzhe Ding, A skeleton model to enumerate standard puzzle sequences, arXiv:2106.09471 [math.CO], 2021.
FORMULA
Basset (2014, Eq. (4)) gives a g.f.
a(n) = (2n)! [z^(2n)] 2*sqrt(2)*z*(exp(sqrt(2)*z)-1) / (2+sqrt(2)*z + (2-sqrt(2)*z)*exp(sqrt(2)*z)). - Alois P. Heinz, Sep 06 2015
MAPLE
egf:= 2*(x->1/(1-x*tanh(x))-1)(z/sqrt(2)):
a:= n-> (2*n)!*coeff(series(egf, z, 2*n+1), z, 2*n):
seq(a(n), n=1..20); # Alois P. Heinz, Sep 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 05 2015
EXTENSIONS
More terms from Alois P. Heinz, Sep 06 2015
Name corrected by Don Knuth. - N. J. A. Sloane, May 06 2020
STATUS
approved