login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136647 G.f.: A(x) = Sum_{n>=0} asinh( 2^n*x )^n / n! ; a power series in x with integer coefficients. 2
1, 2, 8, 84, 2688, 276892, 94978048, 111457917800, 457117679616000, 6660816097416169260, 349290546231751288553472, 66597307693046550483175282456, 46556113319179632622352835689840640 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..12.

FORMULA

a(n) = [y^n] ( sqrt(1+y^2) + y )^(2^n), since log(sqrt(1+y^2) + y) = asinh(y); [y^n] F(y) denotes the coefficient of y^n in F(y).

EXAMPLE

G.f.: A(x) = 1 + 2*x + 8*x^2 + 84*x^3 + 2688*x^4 + 276892*x^5 +...

This is a special application of the following identity.

Let F(x),G(x), be power series in x such that F(0)=1,G(0)=1, then

Sum_{n>=0} m^n * H(q^n*x) * log( F(q^n*x)*G(x) )^n / n! =

Sum_{n>=0} x^n * G(x)^(m*q^n) * [y^n] H(y)*F(y)^(m*q^n).

PROG

(PARI) {a(n)=polcoeff(sum(k=0, n, asinh(2^k*x +x*O(x^n))^k/k!), n)}

(PARI) {a(n)=polcoeff((sqrt(1+x^2)+x+x*O(x^n))^(2^n), n)}

CROSSREFS

Cf. A136558.

Sequence in context: A276488 A261683 A134089 * A261730 A052456 A276991

Adjacent sequences:  A136644 A136645 A136646 * A136648 A136649 A136650

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 20 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 07:11 EST 2016. Contains 278761 sequences.