login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006585 Egyptian fractions: number of solutions to 1 = 1/x_1 + ... + 1/x_n in positive integers x_1 < ... < x_n.
(Formerly M4281)
7
1, 0, 1, 6, 72, 2320, 245765, 151182379 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

All denominators in the expansion 1 = 1/x_1 + ... + 1/x_n are bounded by A000058(n-1), i.e., 0 < x_1 < ... < x_n < A000058(n-1). Furthermore, for a fixed n, x_i <= (n+1-i)*(A000058(i-1)-1). - Max Alekseyev, Oct 11 2012

If on the other hand, x_k need not be unique, see A002966. - Robert G. Wilson v, Jul 17 2013

REFERENCES

Marc LeBrun, personal communication.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..8.

Mohammad K. Azarian, Diophantine Pair, Problem B-881, Fibonacci Quarterly, Vol. 37, No. 3, August 1999, pp. 277-278; Solution to Problem B-881, Fibonacci Quarterly, Vol. 38, No. 2, May 2000, pp. 183-184.

M. Le Brun, Email to N. J. A. Sloane, Jul 1991

Index entries for sequences related to Egyptian fractions

FORMULA

a(n) = A280520(n,1).

EXAMPLE

The 6 solutions for n=4 are 2,3,7,42; 2,3,8,24; 2,3,9,18; 2,3,10,15; 2,4,5,20; 2,4,6,12.

CROSSREFS

Cf. A000058, A002966, A002967, A280518.

Sequence in context: A259212 A279234 A132878 * A166472 A182917 A203433

Adjacent sequences:  A006582 A006583 A006584 * A006586 A006587 A006588

KEYWORD

nonn,nice,hard,more

AUTHOR

N. J. A. Sloane.

EXTENSIONS

a(1)-a(7) are confirmed by Jud McCranie, Dec 11 1999

a(8) from John Dethridge (jcd(AT)ms.unimelb.edu.au), Jan 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 21 04:48 EDT 2017. Contains 292295 sequences.