login
A064872
The minimal number which has multiplicative persistence 8 in base n.
8
7577, 130883, 596667, 3644381, 2820, 61773, 2752, 5136, 7452, 38631, 2780, 8015, 2996, 542, 8611, 4591, 575, 10586, 2532, 2681, 2764, 1016, 4547, 10151, 1065, 983, 813, 5431, 900, 1255, 983, 5179, 5117, 1190, 982, 1129, 1501, 1491, 1471, 1084
OFFSET
13,1
COMMENTS
The persistence of a number is the number of times you need to multiply the digits together before reaching a single digit. a(7)=1086400325525346, a(10)=2677889, a(11)=757074, a(8) and a(9) seem not to exist.
LINKS
M. R. Diamond and D. D. Reidpath, A counterexample to a conjecture of Sloane and Erdos, J. Recreational Math., 1998 29(2), 89-92.
T. Lamont-Smith, Multiplicative Persistence and Absolute Multiplicative Persistence, J. Int. Seq., Vol. 24 (2021), Article 21.6.7.
N. J. A. Sloane, The persistence of a number, J. Recreational Math., 6 (1973), 97-98.
Eric Weisstein's World of Mathematics, Multiplicative Persistence
FORMULA
a(n) = 9*n-[n/40320] for n > 40319.
EXAMPLE
a(13) = 7577 because 7577 is the fewest number with persistence 8 in base 13.
KEYWORD
base,easy,nonn
AUTHOR
Sascha Kurz, Oct 08 2001
STATUS
approved