This site is supported by donations to The OEIS Foundation.



Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051255 Number of cyclically symmetric transpose complement plane partitions in a 2n X 2n X 2n box. 9
1, 1, 2, 11, 170, 7429, 920460, 323801820, 323674802088, 919856004546820, 7434724817843114428, 170943292930264547814443, 11183057455425265737399150652, 2081853548182272792243789109645876 (list; graph; refs; listen; history; text; internal format)



D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.15), p. 199 (corrected).


Vincenzo Librandi, Table of n, a(n) for n = 0..60

Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.

M. T. Batchelor, J. de Gier and B. Nienhuis, The quantum symmetric XXZ chain at Delta=-1/2, alternating sign matrices and plane partitions, arXiv cond-mat/0101385, 2001. See N_8(2n).

D. M. Bressoud, Corrections: Proofs and Confirmations

N. T. Cameron, Random walks, trees and extensions of Riordan group techniques

Naiomi Cameron, J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.

J. de Gier, Loops, matchings and alternating-sign matrices, arXiv:math/0211285 [math.CO], 2002.

I. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005.


a(n) ~ exp(1/72) * GAMMA(1/3)^(2/3) * n^(7/72) * 3^(3*n^2 - 3*n/2 + 11/72) / (A^(1/6) * Pi^(1/3) * 2^(4*n^2 - n - 1/18)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Feb 28 2015

a(n) = Product_{i=0..n-1} (3i+1) C(6i,2i)/(C(4i+1,2i)*(2i+1)), using [Bressoud, Corrections, p. 199: N8]. - M. F. Hasler, Oct 04 2018


For n=0 there is the empty partition by convention so a(0)=1. For n=1 there is a single cyclically symmetric transpose complement plane partition in a 2 X 2 X 2 box so a(1)=1.


A051255 := proc(n) local i; mul((3*i+1)*(6*i)!*(2*i)!/((4*i)!*(4*i+1)!), i=0..n-1); end;


a[n_] := Product[(3*i+1)*(6*i)!*(2*i)!/((4*i)!*(4*i+1)!), {i, 0, n-1}]; Table[a[n], {n, 0, 13}] (* Jean-Fran├žois Alcover, Feb 25 2014 *)


(PARI) a(n)=prod(i=0, n-1, (3*i+1)*(6*i)!*(2*i)!/((4*i)!*(4*i+1)!)); \\ Joerg Arndt, Feb 25 2014

(PARI) A051255(n)=prod(i=0, n-1, (3*i+1)*binomial(6*i, 2*i)/binomial(4*i+1, 2*i)/(2*i+1)) \\ M. F. Hasler, Oct 04 2018


Cf. A049504.

Sequence in context: A295269 A197336 A013050 * A120445 A003088 A121231

Adjacent sequences:  A051252 A051253 A051254 * A051256 A051257 A051258




N. J. A. Sloane


More terms from Michel ten Voorde

Missing a(0)=1 term added by Michael Somos, Feb 25 2014



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 10:13 EST 2019. Contains 319330 sequences. (Running on oeis4.)