login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097309 Chebyshev polynomials of the second kind, U(n,x), evaluated at x=13. 3
0, 1, 26, 675, 17524, 454949, 11811150, 306634951, 7960697576, 206671502025, 5365498355074, 139296285729899, 3616337930622300, 93885489910449901, 2437406399741075126, 63278680903357503375, 1642808297087554012624 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

COMMENTS

b(n)^2 - 42*(2*a(n))^2 = +1 with b(n):=A097308(n) gives all nonnegative integer solutions of this D:=42*4=168 Pell equation.

For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 26's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011

For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,25}. Milan Janjic, Jan 25 2015

LINKS

Indranil Ghosh, Table of n, a(n) for n = -1..705

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (26,-1).

FORMULA

a(n)= S(n, 26) = U(n, 13), n>=-1, with Chebyshev polynomials of 2nd kind. See A049310 for the triangle of S(n, x) coefficients. S(-1, x) := 0 =: U(-1, x).

a(n)= ((13+2*sqrt(42))^n - (13-2*sqrt(42))^n)/(4*sqrt(42)), (Binet form).

a(n)= sum(((-1)^k)*binomial(n-k, k)*26^(n-2*k), k=0..floor(n/2)).

G.f.: 1/(1-26*x+x^2).

a(n)=26*a(n-1)-a(n-2), a(-1)=0, a(0)=1. - Philippe Deléham, Nov 18 2008

a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*25^k. - Philippe Deléham, Feb 10 2012

With an offset of 0, product {n >= 1} (1 + 1/a(n)) = 1/6*(6 + sqrt(42)). - Peter Bala, Dec 23 2012

Product {n >= 2} (1 - 1/a(n)) = 1/13*(6 + sqrt(42)). - Peter Bala, Dec 23 2012

a(n) = sqrt((A097308(n)^2 - 1)/168).

MATHEMATICA

lst={}; Do[AppendTo[lst, GegenbauerC[n, 1, 13]], {n, 0, 8^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)

PROG

(Sage) [lucas_number1(n, 26, 1) for n in xrange(0, 20)] # Zerinvary Lajos, Jun 25 2008

CROSSREFS

Cf. A097308, A101950.

Sequence in context: A209963 A158542 A171331 * A208778 A208499 A207587

Adjacent sequences:  A097306 A097307 A097308 * A097310 A097311 A097312

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 24 07:58 EST 2017. Contains 295173 sequences.