OFFSET
1,3
COMMENTS
This equals r0 + 1/6 where r0 is the real root of y^3 - (1/12)*y - 109/108.
The complex roots of 2*x^3 - x^2 - 2 are (w1*(109 + 6*sqrt(330))^(1/3) + w2*(109 - 6*sqrt(330))^(1/3) + 1)/6 = -0.3487146684... + 0.8447013842...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp((2/3)*Pi*i) and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1.
Using hyperbolic functions these roots are (-cosh((1/3)*arccosh(109)) + sqrt(3)*sinh((1/3)*arccosh(109))*i)/6, and its complex conjugate.
FORMULA
r = ((109 + 6*sqrt(330))^(1/3) + (109 + 6*sqrt(330))^(-1/3) + 1)/6.
r = ((109 + 6*sqrt(330))^(1/3) + (109 - 6*sqrt(330))^(1/3) + 1)/6.
r = (2*cosh((1/3)*arccosh(109)) + 1)/6.
EXAMPLE
1.197429336933032971559300287794721737140756086323958649381751358853315707...
MATHEMATICA
RealDigits[x /. FindRoot[2*x^3 - x^2 - 2, {x, 1}, WorkingPrecision -> 100]][[1]] (* Amiram Eldar, Sep 29 2022 *)
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Sep 29 2022
STATUS
approved