login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053469 a(n) = n*6^(n-1). 10
1, 12, 108, 864, 6480, 46656, 326592, 2239488, 15116544, 100776960, 665127936, 4353564672, 28298170368, 182849716224, 1175462461440, 7522959753216, 47958868426752, 304679870005248, 1929639176699904, 12187194800209920 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Binomial transform of A053464. - R. J. Mathar, Oct 26 2011

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..400

F. Ellermann, Illustration of binomial transforms

Index entries for linear recurrences with constant coefficients, signature (12,-36)

FORMULA

a(n) = 12*a(n-1) - 36*a(n-2), n>0; a(0)=1.

G.f.: x/(6x-1)^2. - Zerinvary Lajos, Apr 28 2009

MATHEMATICA

f[n_]:=n*6^(n-1); f[Range[40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)

LinearRecurrence[{12, -36}, {1, 12}, 20] (* Harvey P. Dale, Apr 28 2015 *)

PROG

(Sage) [lucas_number1(n, 12, 36) for n in xrange(1, 21)] # Zerinvary Lajos, Apr 28 2009

(MAGMA) [n*(6^(n-1)): n in [1..30]]; // Vincenzo Librandi, Jun 09 2011

(PARI) a(n)=n*6^(n-1) \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A002697, A027471.

Sequence in context: A241230 A037972 A111990 * A055533 A037602 A037707

Adjacent sequences:  A053466 A053467 A053468 * A053470 A053471 A053472

KEYWORD

easy,nonn

AUTHOR

Barry E. Williams, Jan 13 2000

EXTENSIONS

More terms from James A. Sellers, Feb 02 2000

More terms from Zerinvary Lajos, Oct 02 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 23:01 EDT 2019. Contains 324222 sequences. (Running on oeis4.)