login
A223139
Decimal expansion of (sqrt(13) - 1)/2.
5
1, 3, 0, 2, 7, 7, 5, 6, 3, 7, 7, 3, 1, 9, 9, 4, 6, 4, 6, 5, 5, 9, 6, 1, 0, 6, 3, 3, 7, 3, 5, 2, 4, 7, 9, 7, 3, 1, 2, 5, 6, 4, 8, 2, 8, 6, 9, 2, 2, 6, 2, 3, 1, 0, 6, 3, 5, 5, 2, 2, 6, 5, 2, 8, 1, 1, 3, 5, 8, 3, 4, 7, 4, 1, 4, 6, 5, 0, 5, 2, 2, 2, 6, 0, 2, 3, 0, 9, 5, 4, 1, 0, 0, 9, 2, 4, 5, 3, 5, 8, 8, 3, 6, 7, 5, 7
OFFSET
1,2
COMMENTS
Apart from a(1) the same as A209927 and A085550. [Joerg Arndt, Sep 17 2013]
Decimal expansion of sqrt(3 - sqrt(3 - sqrt(3 - sqrt(3 - ... )))).
Sequence with a(1) = 2 is decimal expansion of sqrt(3 + sqrt(3 + sqrt(3 + sqrt(3 + ... )))) - A209927.
This is the positive root of x^2 + x - 3, and the negative one is -A209927. - Wolfdieter Lang, Aug 29 2022
LINKS
B. Sury, Nothing Lucky about 13, Mathematics Magazine, Vol. 83, No. 4 (October 2010), pp. 289-293.
FORMULA
Closed form: (sqrt(13) - 1)/2 = A209927-1 = A098316-2.
sqrt(3 - sqrt(3 - sqrt(3 - sqrt(3 - ... )))) + 1 = sqrt(3 + sqrt(3 + sqrt(3 + sqrt(3 + ... )))). See A209927.
Equals 2*(cos(2*Pi/13) + cos(6*Pi/13) + cos(8*Pi/13)) (see Sury link). - Michel Marcus, Aug 21 2015
EXAMPLE
1.3027756377319946465...
MATHEMATICA
RealDigits[(Sqrt[13] - 1)/2, 10, 130]
PROG
(PARI) (sqrt(13)-1)/2 \\ Altug Alkan, Oct 02 2018
CROSSREFS
CF. A122553 (continued fraction).
Sequence in context: A011075 A248820 A085550 * A302278 A302728 A302528
KEYWORD
nonn,cons,easy
AUTHOR
Jaroslav Krizek, Apr 02 2013
STATUS
approved