login
A223136
Numbers n such that sigma(n+1) - sigma(n) = k*n for some integer k, where sigma(n) = A000203 (sum of divisors of n).
3
1, 3, 7, 14, 31, 127, 206, 532, 954, 957, 1334, 1364, 1634, 2685, 2974, 4364, 8191, 14841, 18873, 19358, 20145, 24957, 33998, 36566, 42818, 56564, 64665, 74918, 79826, 79833, 84134, 92685, 104944, 109214, 111506, 116937, 122073, 131071, 138237, 147454, 161001
OFFSET
1,2
COMMENTS
Supersequence of A000668 for k=1 (Mersenne primes), A067803 for k=-1 (numbers n such that sigma(n) - sigma(n+1) = n) and A002961 for k=0 (numbers n such that n and n+1 have same sum of divisors). For number 1 is k=2.
Corresponding values of integers k: 2, 1, 1, 0, 1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,....
LINKS
EXAMPLE
Number 532 is in sequence because sigma(533) - sigma(532) = 588 - 1120 = -532 = (-1) * 532; k = -1.
MATHEMATICA
Select[Range[10000], IntegerQ[(DivisorSigma[1, # + 1] - DivisorSigma[1, #])/#] &] (* T. D. Noe, May 02 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 01 2013
EXTENSIONS
Extended by T. D. Noe, May 02 2013
STATUS
approved