The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027307 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis) and where each step is (2,1), (1,2) or (1,-1). 58
 1, 2, 10, 66, 498, 4066, 34970, 312066, 2862562, 26824386, 255680170, 2471150402, 24161357010, 238552980386, 2375085745978, 23818652359682, 240382621607874, 2439561132029314, 24881261270812490, 254892699352950850 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Equals row sums of triangle A104978 which has g.f. F(x,y) that satisfies: F = 1 + x*F^2 + x*y*F^3. - Paul D. Hanna, Mar 30 2005 a(n) counts ordered complete ternary trees with 2*n-1 leaves, where the internal vertices come in two colors and such that each vertex and its rightmost child have different colors. See [Drake, Example 1.6.9]. An example is given below. - Peter Bala, Sep 29 2011 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Gi-Sang Cheon, S.-T. Jin, L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Available online 30 March 2015. Emeric Deutsch, Problem 10658, American Math. Monthly, 107, 2000, 368-370. B. Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths (Example 1.6.9), A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University. Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019. J. Winter, M. M. Bonsangue and J. J. M. M. Rutten, Context-free coalgebras, 2013. Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing, arXiv:1706.03357 [cs.CL], 2017. FORMULA G.f.: (2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3. a(n) = (1/n) * Sum_{i=0..n-1} 2^(i+1)*binomial(2*n, i)*binomial(n, i+1)), n>0. a(n) = 2*A034015(n-1), n>0. a(n) = Sum_{k=0..n} C(2*n+k, n+2*k)*C(n+2*k, k)/(n+k+1). - Paul D. Hanna, Mar 30 2005 Given g.f. A(x), y=A(x)x satisfies 0=f(x, y) where f(x, y)=x(x-y)+(x+y)y^2 . - Michael Somos, May 23 2005 Series reversion of x(Sum_{k>=0} a(k)x^k) is x(Sum_{k>=0} A085403(k)x^k). G.f. A(x) satisfies A(x)=A006318(x*A(x)). - Vladimir Kruchinin, Apr 18 2011 The function B(x) = x*A(x^2) satisfies B(x) = x+x*B(x)^2+B(x)^3 and hence B(x) = compositional inverse of x*(1-x^2)/(1+x^2) = x+2*x^3+10*x^5+66*x^7+.... Let f(x) = (1+x^2)^2/(1-4*x^2+x^4) and let D be the operator f(x)*d/dx. Then a(n) equals 1/(2*n+1)!*D^(2*n)(f(x)) evaluated at x = 0. For a refinement of this sequence see A196201. - Peter Bala, Sep 29 2011 D-finite with recurrence: 2*n*(2*n+1)*a(n) = (46*n^2-49*n+12)*a(n-1) - 3*(6*n^2-26*n+27)*a(n-2) - (n-3)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 08 2012 a(n) ~ sqrt(50+30*sqrt(5))*((11+5*sqrt(5))/2)^n/(20*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012 EXAMPLE a(3) = 10. Internal vertices colored either b(lack) or w(hite); 5 uncolored leaf vertices shown as o. ........b...........b.............w...........w..... ......./|\........./|\.........../|\........./|\.... ....../.|.\......./.|.\........./.|.\......./.|.\... .....b..o..o.....o..b..o.......w..o..o.....o..w..o.. ..../|\............/|\......../|\............/|\.... .../.|.\........../.|.\....../.|.\........../.|.\... ..o..o..o........o..o..o....o..o..o........o..o..o.. .................................................... ........b...........b.............w...........w..... ......./|\........./|\.........../|\........./|\.... ....../.|.\......./.|.\........./.|.\......./.|.\... .....w..o..o.....o..w..o.......b..o..o.....o..b..o.. ..../|\............/|\......../|\............/|\.... .../.|.\........../.|.\....../.|.\........../.|.\... ..o..o..o........o..o..o....o..o..o........o..o..o.. .................................................... ........b...........w.......... ......./|\........./|\......... ....../.|.\......./.|.\........ .....o..o..w.....o..o..b....... ........../|\........./|\...... ........./.|.\......./.|.\..... ........o..o..o.....o..o..o.... ............................... MATHEMATICA a[n_] := ((n+1)*(2n)!*Hypergeometric2F1[-n, 2n+1, n+2, -1]) / (n+1)!^2; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 14 2011, after Pari *) PROG (PARI) a(n)=if(n<1, n==0, sum(i=0, n-1, 2^(i+1)*binomial(2*n, i)*binomial(n, i+1))/n) (PARI) a(n)=sum(k=0, n, binomial(2*n+k, n+2*k)*binomial(n+2*k, k)/(n+k+1)) \\ Paul D. Hanna (PARI) a(n)=sum(k=0, n, binomial(n, k)*binomial(2*n+k+1, n)/(2*n+k+1) ) /* Michael Somos, May 23 2005 */ CROSSREFS Cf. A104978. A196201. Sequence in context: A230050 A278459 A278461 * A278460 A278462 A060206 Adjacent sequences:  A027304 A027305 A027306 * A027308 A027309 A027310 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 08:53 EDT 2020. Contains 336487 sequences. (Running on oeis4.)