OFFSET
0,4
COMMENTS
For the reversion of x - a*x^2 - b*x^3 - c*x^4 (a!=0, b!=0, c!=0) we have a(n) = Sum(k=1,n-1, (Sum(j=0..k, a^(-n+3*k-j+1) * b^(n-3*k+2*j-1) * c^(k-j) * binomial(j,n-3*k+2*j-1) * binomial(k,j) ) ) * binomial(n+k-1,n-1))/n, n>1, a(1)=1. - Vladimir Kruchinin, May 28 2011
G.f. (with offset 1) satisfies A(x) = 1 + x*A(x)^2 + x^2*A(x)^3.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..105
Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
a(n) = Sum(k=1..n-1, (Sum(j=0..k, binomial(j,n-3*k+2*j-1) * binomial(k,j))) * binomial(n+k-1,n-1))/n, n>1, a(1)=1, a(0)=0. - Vladimir Kruchinin, May 28 2011
D-finite with recurrence 2552*n*(n-1)*(n-2)*a(n) -4*(n-1)*(n-2)*(2909*n-3951)*a(n-1) -2*(n-2)*(6839*n^2 -31331*n +36576)*a(n-2) +(-17563*n^3 +138510*n^2 -359633*n +308670)*a(n-3) -120*(4*n-15)*(2*n-7)*(4*n-17)*a(n-4)=0. - R. J. Mathar, Mar 24 2023
MATHEMATICA
CoefficientList[InverseSeries[Series[y - y^2 - y^3 - y^4, {y, 0, 30}], x], x]
PROG
(Maxima)
a(n):=sum((sum(binomial(j, n-3*k+2*j-1)*binomial(k, j), j, 0, k))*binomial(n+k-1, n-1), k, 1, n-1)/n; \\ Vladimir Kruchinin, May 28 2011
(PARI) x='x+O('x^66); /* that many terms */
Vec(serreverse(x-x^2-x^3-x^4)) /* show terms */ /* Joerg Arndt, May 28 2011 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Jul 05 2001
STATUS
approved