This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005789 3-dimensional Catalan numbers.
(Formerly M3997)
1, 5, 42, 462, 6006, 87516, 1385670, 23371634, 414315330, 7646001090, 145862174640, 2861142656400, 57468093927120, 1178095925505960, 24584089974896430, 521086299271824330, 11198784501894470250, 243661974372798631650, 5360563436201569896300 (list; graph; refs; listen; history; text; internal format)



Number of standard tableaux of shape (n,n,n). - Emeric Deutsch, May 13 2004

Number of up-down permutations of length 2n with no four-term increasing subsequence, or equivalently the number of down-up permutations of length 2n with no four-term decreasing subsequence. (An up-down permutation is one whose descent set is {2, 4, 6, ...}.) - Joel B. Lewis, Oct 04 2009

Equivalent to the number of standard tableaux: number of rectangular arrangements of [1..3n] into n increasing sequences of size 3 and 3 increasing sequences of size n. a(n) counts a subset of A025035(n). - Olivier Gérard, Feb 15 2011

Number of walks in 3-dimensions using steps (1,0,0), (0,1,0), and (0,0,1) from (0,0,0) to (n,n,n) such that after each step we have z>=y>=x. - Thotsaporn Thanatipanonda, Feb 21 2012

Number of words consisting of n 'x' letters, n 'y' letters and n 'z' letters such that the 'x' count is always greater than or equal to the 'y' count and the 'y' count is always greater than or equal to the 'z' count; e.g., for n=2 we have xxyyzz, xxyzyz, xyxyzz, xyxzyz and xyzxyz. - Jon Perry, Nov 16 2012


N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Snover, Stephen L.; and Troyer, Stephanie F.; A four-dimensional Catalan formula. Proceedings of the Nineteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989). Congr. Numer. 75 (1990), 123-126.

R. A. Sulanke, Generalizing Narayana and Schroeder Numbers to Higher Dimensions, Electron. J. Combin. 11 (2004), Research Paper 54, 20 pp.

Sherry H. F. Yan, On Wilf equivalence for alternating permutations, Elect. J. Combinat.; 20 (2013), #P58.


Alois P. Heinz, Table of n, a(n) for n = 1..220

Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux. Also arXiv preprint arXiv:1202.6229, 2012. - N. J. A. Sloane, Jul 07 2012

K. Gorska and K. A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008, 2013

J. B. Lewis, Pattern avoidance and RSK-like algorithms for alternating permutations and Young tableaux [From Joel B. Lewis, Oct 04 2009]

J. B. Lewis, Pattern Avoidance for Alternating Permutations and Reading Words of Tableaux, Ph. D. Dissertation, Department of Mathematics, MIT, 2012. - From N. J. A. Sloane, Oct 12 2012

R. A. Sulanke, Three-dimensional Narayana and Schröder numbers


a(n) = 2*(3*n)!/(n!*(n+1)!*(n+2)!);

a(n) = 0!*1!*..*(k-1)! *(k*n)! / ( n!*(n+1)!*..*(n+k-1)! ) for k=3.

G.f. (1/30)*(1/x-27)*(9*hypergeom([1/3, 2/3],[1],27*x)+(216*x+1)* hypergeom([4/3, 5/3],[2],27*x))-1/(3*x). - Mark van Hoeij, Oct 14 2009

a(n) ~ 3^(3*n+1/2) / (Pi*n^4). - Vaclav Kotesovec, Nov 13 2014


a:= n-> (3*n)! *mul(i!/(n+i)!, i=0..2):

seq(a(n), n=1..20);  # Alois P. Heinz, Feb 23 2012


(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Table[ NumberOfTableaux@ {n, n, n}], {n, 17}] (* Robert G. Wilson v, Nov 15 2006 *)

Table[2*(3*n)!/(n!*(n+1)!*(n+2)!), {n, 1, 20}] (* Vaclav Kotesovec, Nov 13 2014 *)


A row of A060854.

A subset of A025035.

A151334 is apparently an essentially identical sequence.

Sequence in context: A024492 A217805 A217808 * A151334 A217809 A217810

Adjacent sequences:  A005786 A005787 A005788 * A005790 A005791 A005792




N. J. A. Sloane



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified March 4 17:56 EST 2015. Contains 255187 sequences.