The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109134 Decimal expansion of Phi, the real root of the equation 1/x = (x-1)^2. 8
 1, 7, 5, 4, 8, 7, 7, 6, 6, 6, 2, 4, 6, 6, 9, 2, 7, 6, 0, 0, 4, 9, 5, 0, 8, 8, 9, 6, 3, 5, 8, 5, 2, 8, 6, 9, 1, 8, 9, 4, 6, 0, 6, 6, 1, 7, 7, 7, 2, 7, 9, 3, 1, 4, 3, 9, 8, 9, 2, 8, 3, 9, 7, 0, 6, 4, 6, 0, 8, 0, 6, 5, 5, 1, 2, 8, 0, 8, 1, 0, 9, 0, 7, 3, 8, 2, 2, 7, 0, 9, 2, 8, 4, 2, 2, 5, 0, 3, 0, 3, 6, 4, 8, 3, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The silver number (A060006) is equal to Phi*(Phi-1). Also Phi*(Phi-1) = 1/(Phi-1). - Richard R. Forberg, Oct 08 2014 Equations to which this is a root can also be written as: x = sqrt(x + sqrt(x)); x^2 - x - sqrt(x) = 0; or this form where n = 1: x = n + 1/sqrt(x). When n = 2 then the root is 2.618033988... = A104457 = 1 + A001622 or 1 + "Golden Ratio" called phi. - Richard R. Forberg, Oct 08 2014 Also equals the largest root (negated) of the Mandelbrot polynomial P_2(z) = 1+z*(1+z)^2. - Jean-François Alcover, Apr 16 2015 Suppose that r is a real number in the interval [3/2, 5/3). Let C(r) = (c(k)) be the sequence of coefficients in the Maclaurin series for 1/(Sum_{k>=0} floor((k+1)*r))(-x)^k). Conjectures: the limit L(r) of c(k+1)/c(k) as k -> oo exists, L(r) is discontinuous at 5/3 (cf. A279676), and the left limit of L(r) as r->5/3 is Phi. - Clark Kimberling, Jul 11 2017 REFERENCES M. Gardner, A Gardner's Workout, pp. 124-126, A. K. Peters MA 2001. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..5000 Simon Baker, On small bases which admit countably many expansions, Journal of Number Theory, Volume 147, February 2015, Pages 515-532. Simon Plouffe, Plouffe's Inverter . Nikita Sidorov, Expansions in non-integer bases: Lower, middle and top orders, Journal of Number Theory, Volume 129, Issue 4, April 2009, Pages 741-754. See Prop. 2.3 p. 744. Yuru Zou, Derong Kong, On a problem of countable expansions, Journal of Number Theory, Volume 158, January 2016, Pages 134-150. See Theorem 1.1 p. 135. FORMULA Equals 1+A075778. - R. J. Mathar, Aug 20 2008 Equals (1/6*(108+12*sqrt(69))^(1/3) + 2/(108+12*sqrt(69))^(1/3))^2. - Vaclav Kotesovec, Oct 08 2014 Equals Rho^2 where Rho is the plastic number 1.3247179572...(see A060006). - Philippe Deléham, Sep 29 2020 EXAMPLE 1.75487766624669276004950889635852869189460661777279314398928397064... MATHEMATICA FindRoot[x^3 - 2x^2 + x - 1 == 0, {x, 1.75}, WorkingPrecision -> 128][[1, 2]] (* Robert G. Wilson v, Aug 19 2005 *) Root[x^3-2x^2+x-1, x, 1] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 05 2013 *) PROG (PARI) {d=104; default(realprecision, d); print(k=solve(x=1, 2, (x-1)^2-1/x)); for(c=0, d, z=floor(k); print1(z, ", ", ); k=10*(k-z))} (PARI) polrootsreal(x^3-2*x^2+x-1)[1] \\ Charles R Greathouse IV, Aug 15 2014 CROSSREFS Cf. A001622, A001685, A060006, A075778, A104457. Sequence in context: A289032 A289005 A225408 * A075778 A289033 A010510 Adjacent sequences:  A109131 A109132 A109133 * A109135 A109136 A109137 KEYWORD cons,nonn AUTHOR Lekraj Beedassy, Aug 17 2005 EXTENSIONS Extended by Klaus Brockhaus and Robert G. Wilson v, Aug 19 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 11 09:54 EDT 2021. Contains 342886 sequences. (Running on oeis4.)