This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084849 a(n) = 1 + n + 2*n^2. 38
 1, 4, 11, 22, 37, 56, 79, 106, 137, 172, 211, 254, 301, 352, 407, 466, 529, 596, 667, 742, 821, 904, 991, 1082, 1177, 1276, 1379, 1486, 1597, 1712, 1831, 1954, 2081, 2212, 2347, 2486, 2629, 2776, 2927, 3082, 3241, 3404, 3571, 3742, 3917, 4096, 4279, 4466 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = A058331(n) + A000027(n). a(n) = A014105(n) + 1; A100035(a(n)) = 1. - Reinhard Zumkeller, Oct 31 2004 Equals (1, 2, 3, ...) convolved with (1, 2, 4, 4, 4, ...). a(3) = 22 = (1, 2, 3, 4) dot (4, 4, 2, 1) = (4 + 8 + 6 + 4). - Gary W. Adamson, May 01 2009 a(n) is also the number of ways to place 2 nonattacking bishops on a 2 X (n+1) board. - Vaclav Kotesovec, Jan 29 2010 Partial sums are A174723. - Wesley Ivan Hurt, Apr 16 2016 Also the number of irredundant sets in the n-cocktail party graph. - Eric W. Weisstein, Aug 09 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 W. Burrows, C. Tuffley, Maximising common fixtures in a round robin tournament with two divisions, arXiv preprint arXiv:1502.06664 [math.CO], 2015. Guo-Niu Han, Enumeration of Standard Puzzles Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy] Eric Weisstein's World of Mathematics, Cocktail Party Graph Eric Weisstein's World of Mathematics, Irredundant Set Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: (1 + x + 2x^2)/(1 - x)^3. a(n) = ceiling((2n+1)^2/2) - n = A001844(n) - n. - Paul Barry, Jul 16 2006 Row sums of triangle A131901. A084849 = binomial transform of (1, 3, 4, 0, 0, 0,...). - Gary W. Adamson, Jul 26 2007 Equals A134082 * [1,2,3,...]. - Gary W. Adamson, Oct 07 2007 a(n) = (1 + A000217(2n-1) + A000217(2n+1))/2. - Enrique Pérez Herrero, Apr 02 2010 a(n) = (A177342(n+1) - A177342(n))/2, with n>0. - Bruno Berselli, May 19 2010 a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 0, with n>2. - Bruno Berselli, May 24 2010 a(n) = 4*n + a(n-1) - 1 (with a(0)=1). - Vincenzo Librandi, Aug 08 2010 With an offset of 1 the generating function is 2*t^2-3*t+2, which is the Alexander polynomial (with negative powers cleared) of the 3-twist knot. The associated Seifert matrix S is [[-1,-1],[0,-2]]. a(n-1) = det(transpose(S)-n*S). Cf. A060884. - Peter Bala, Mar 14 2012 E.g.f.: (1 + 3*x + 2*x^2)*exp(x). - Ilya Gutkovskiy, Apr 16 2016 MAPLE A084849:=n->1+n+2*n^2: seq(A084849(n), n=0..100); # Wesley Ivan Hurt, Apr 15 2016 MATHEMATICA s = 1; lst = {s}; Do[s += n + 2; AppendTo[lst, s], {n, 1, 200, 4}]; lst (* Zerinvary Lajos, Jul 11 2009 *) f[n_]:=(n*(2*n+1)+1); Table[f[n], {n, 5!}] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *) Table[1 + n + 2 n^2, {n, 0, 20}] (* Eric W. Weisstein, Aug 09 2017 *) LinearRecurrence[{3, -3, 1}, {4, 11, 22}, {0, 20}] (* Eric W. Weisstein, Aug 09 2017 *) CoefficientList[Series[(-1 - x - 2 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Aug 09 2017 *) PROG (PARI) a(n)=1+n+2*n^2 \\ Charles R Greathouse IV, Sep 24 2015 (MAGMA) [1+n+2*n^2 : n in [0..100]]; // Wesley Ivan Hurt, Apr 15 2016 CROSSREFS Cf. A100040, A100041, A100036, A100037, A100038, A100039, A131901, A134082. Cf. A004767 (first differences), A060884, A174723. Sequence in context: A038414 A008154 A008162 * A008265 A160424 A008229 Adjacent sequences:  A084846 A084847 A084848 * A084850 A084851 A084852 KEYWORD easy,nonn AUTHOR Paul Barry, Jun 09 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 01:23 EST 2019. Contains 329963 sequences. (Running on oeis4.)