login
A358943
Decimal expansion of the real root of 3*x^3 - 2.
0
8, 7, 3, 5, 8, 0, 4, 6, 4, 7, 3, 6, 2, 9, 8, 8, 6, 9, 0, 4, 7, 2, 2, 0, 4, 2, 6, 8, 1, 3, 9, 9, 8, 7, 5, 6, 7, 4, 6, 4, 7, 5, 8, 8, 1, 9, 0, 7, 8, 7, 7, 2, 4, 1, 7, 0, 0, 9, 2, 4, 6, 0, 1, 9, 0, 9, 5, 6, 6, 6, 0, 6, 3, 9, 8, 6, 8, 0
OFFSET
0,1
COMMENTS
This number is the reciprocal of A319034.
The other (complex) roots are, with the present number r = (2/3)^(1/3), r*w = -0.4367902323... + 0.7565428747...*i, and its conjugate, where w = exp(2*Pi*i/3) = (-1 + sqrt(3)*i)/2 is one of the complex roots of x^3 - 1.
FORMULA
r = (2/3)^(1/3) = 1/A319034 = (1/3)*18^(1/3) = (1/3)*A010590.
EXAMPLE
0.87358046473629886904722042681399875674647588190787724170092460190956...
MATHEMATICA
RealDigits[Surd[2/3, 3], 10, 100][[1]] (* Amiram Eldar, Jan 05 2023 *)
PROG
(PARI) (2/3)^(1/3) \\ Michel Marcus, Jan 05 2023
CROSSREFS
Sequence in context: A073232 A257581 A182499 * A198561 A086253 A225119
KEYWORD
nonn,cons,easy
AUTHOR
Wolfdieter Lang, Jan 02 2023
STATUS
approved