

A092526


Decimal expansion of (2/3)*cos( (1/3)*arccos(29/2) ) + 1/3.


7



1, 4, 6, 5, 5, 7, 1, 2, 3, 1, 8, 7, 6, 7, 6, 8, 0, 2, 6, 6, 5, 6, 7, 3, 1, 2, 2, 5, 2, 1, 9, 9, 3, 9, 1, 0, 8, 0, 2, 5, 5, 7, 7, 5, 6, 8, 4, 7, 2, 2, 8, 5, 7, 0, 1, 6, 4, 3, 1, 8, 3, 1, 1, 1, 2, 4, 9, 2, 6, 2, 9, 9, 6, 6, 8, 5, 0, 1, 7, 8, 4, 0, 4, 7, 8, 1, 2, 5, 8, 0, 1, 1, 9, 4, 9, 0, 9, 2, 7, 0, 0, 6, 4, 3, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.3.
Paul J. Nahin, The Logician and the Engineer, How George Boole and Claude Shannon Created the Information Age, Princeton University Press, Princeton and Oxford, 2013, Chap. 7: Some Combinational Logic Examples, Section 7.1: Channel Capacity, Shannon's Theorem, and ErrorDetection Theory, page 120.


LINKS

Harry J. Smith, Table of n, a(n) for n=1,...,20000


FORMULA

The real root of x^3  x^2  1.  Franklin T. AdamsWatters, Oct 12 2006
The only real irrational root of x^4x^2x1 (1 is also a root). [Nahim]
Equals 1 + A088559.


EXAMPLE

=1.46557123187676802665673122521993910802557756847228570164318311124926...


MATHEMATICA

RealDigits[(2 Cos[ ArcCos[ 29/2]/3] + 1)/3, 10, 111][[1]] (from Robert G. Wilson v Apr 12 2004)
RealDigits[ Solve[ x^3  x^2  1 == 0, x][[1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Oct 10 2013 *)


PROG

(PARI) { allocatemem(932245000); default(realprecision, 20080); x=solve(x=1, 2, x^3  x^2  1); for (n=1, 20000, d=floor(x); x=(xd)*10; write("b092526.txt", n, " ", d)); } [Harry J. Smith, Jun 21 2009]


CROSSREFS

Cf. A088559.
Sequence in context: A062117 A200497 A088559 * A243396 A140243 A023825
Adjacent sequences: A092523 A092524 A092525 * A092527 A092528 A092529


KEYWORD

nonn,cons,easy


AUTHOR

N. J. A. Sloane, Apr 07 2004


EXTENSIONS

More terms from Robert G. Wilson v, Apr 12 2004


STATUS

approved



