OFFSET
0,2
COMMENTS
T(n,3) of A085475.
Sequence found by reading the line from 1, in the direction 1, 10,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 09 2011
Sums of the triangular numbers from A000217(2*n-1) to A000217(2*n+1), with A000217(-1) = 0. - Bruno Berselli, Sep 04 2018
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: (1 + 7*x + 4*x^2)/(1 - x)^3.
a(n) = binomial(2*n+3,3) - binomial(2*n,3).
a(n) = 12*n + a(n-1) - 3 for n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(0)=1, a(1)=10, a(2)=31; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Nov 15 2011
E.g.f.: exp(x)*(1 + 9*x + 6*x^2). - Elmo R. Oliveira, Oct 18 2024
MATHEMATICA
Table[3 n (2 n + 1) + 1, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)
Table[Binomial[2 n + 3, 3] - Binomial[2 n, 3], {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 10, 31}, 50] (* Harvey P. Dale, Nov 15 2011 *)
PROG
(PARI) x='x+O('x^50); Vec((1+7*x+4*x^2)/(1-x)^3) \\ G. C. Greubel, Jun 13 2017
(PARI) for(n=0, 25, print1(6*n^2 + 3*n + 1, ", ")) \\ G. C. Greubel, Jun 13 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Jul 01 2003
STATUS
approved