login
A085474
C(2*n+4,4)-C(2*n,4).
3
1, 15, 69, 195, 425, 791, 1325, 2059, 3025, 4255, 5781, 7635, 9849, 12455, 15485, 18971, 22945, 27439, 32485, 38115, 44361, 51255, 58829, 67115, 76145, 85951, 96565, 108019, 120345, 133575, 147741, 162875, 179009, 196175, 214405, 233731
OFFSET
0,2
COMMENTS
T(n,4) of A085475.
FORMULA
G.f.: (1 + 11*x + 15*x^2 + 5*x^3)/(1-x)^4.
a(n) = (16*n^3 + 12*n^2 + 14*n + 3)/3.
MAPLE
A085474:=n->(16*n^3+12*n^2+14*n+3)/3; seq(A085474(n), n=0..100); # Wesley Ivan Hurt, Nov 12 2013
MATHEMATICA
Table[(16n^3+12n^2+14n+3)/3, {n, 0, 50}] (* Wesley Ivan Hurt, Nov 12 2013 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 15, 69, 195}, 40] (* Harvey P. Dale, Nov 10 2017 *)
PROG
(Magma) [(16*n^3+12*n^2+14*n+3)/3: n in [0..50]]; // Vincenzo Librandi, Sep 22 2011
CROSSREFS
Sequence in context: A211917 A015876 A201126 * A212109 A124893 A352941
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Jul 01 2003
STATUS
approved