

A152422


Decimal expansion of (sqrt(3)1)/2.


2



3, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9, 3, 3, 7, 8, 6, 2, 4, 2, 8, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The number has continued fraction [0, 2, 1, 2, 1, 2, 1, ...].
The iterated function z^2  1/2 gives a good rational approximation of this number times 1 after sixty steps.  Alonso del Arte, Apr 10 2016


LINKS

Table of n, a(n) for n=0..98.


FORMULA

Equals Product_{k>=1} (1 + (1)^k * 2/(6*k3)).  Amiram Eldar, Aug 10 2020


EXAMPLE

0.36602540378443864676372317...


MAPLE

Digits:=100; evalf((sqrt(3)1)/2); # Wesley Ivan Hurt, Apr 18 2014


MATHEMATICA

RealDigits[(Sqrt[3]  1)/2, 10, 100] [[1]] (* Wesley Ivan Hurt, Apr 18 2014 *)


PROG

(PARI) (sqrt(3)1)/2 \\ Altug Alkan, Apr 11 2016


CROSSREFS

A variant of A010527, which is the main entry.  N. J. A. Sloane, Dec 04 2008
Sequence in context: A335633 A009193 A144253 * A332133 A256460 A152139
Adjacent sequences: A152419 A152420 A152421 * A152423 A152424 A152425


KEYWORD

nonn,cons,easy


AUTHOR

Geoffrey Caveney, Dec 03 2008


EXTENSIONS

a(98) corrected by Georg Fischer, Apr 03 2020


STATUS

approved



