This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152419 Decimal expansion of 3-Pi^2/6-zeta(3). 0
 1, 5, 3, 0, 0, 9, 0, 2, 9, 9, 9, 2, 1, 7, 9, 2, 7, 8, 1, 2, 7, 8, 4, 6, 6, 7, 1, 8, 4, 2, 5, 2, 4, 8, 2, 0, 0, 1, 6, 0, 6, 3, 8, 0, 6, 4, 5, 2, 7, 0, 2, 6, 8, 0, 4, 7, 2, 1, 7, 0, 2, 1, 5, 2, 8, 8, 1, 5, 4, 3, 2, 3, 8, 1, 0, 4, 8, 6, 0, 3, 5, 9, 7, 9, 9, 1, 5, 2, 2, 5, 7, 7, 0, 9, 0, 6, 0, 3, 6, 5, 4, 9, 7, 9, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Consider the constants N(s)=sum_{n=2,3,...infinity} 1/(n^s*(n-1)) = s-sum_{l=2..s} Zeta(l), where Zeta is Riemann's zeta function. We have N(1)=1 and this constant here is N(3). LINKS R. J. Mathar, Series of reciprocal powers of k-almost primes, section 4.1. FORMULA Equals 3-A013661-A002117. EXAMPLE Equals 0.153009029992179278127846671842524820016063806452702680... MAPLE evalf(3-Pi^2/6-Zeta(3)); PROG (PARI) 3-Pi^2/6-zeta(3) \\ Charles R Greathouse IV, Jan 31 2017 CROSSREFS Sequence in context: A046270 A139207 A137237 * A322758 A077602 A238008 Adjacent sequences:  A152416 A152417 A152418 * A152420 A152421 A152422 KEYWORD cons,easy,nonn AUTHOR R. J. Mathar, Dec 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 22 12:26 EDT 2019. Contains 326177 sequences. (Running on oeis4.)