login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098292 First differences of Chebyshev polynomials S(n,731)=A098263(n) with Diophantine property. 4
1, 730, 533629, 390082069, 285149458810, 208443864308041, 152372179659719161, 111383854887390398650, 81421445550502721693989, 59518965313562602167907309, 43508282222768711682018548890 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

(27*b(n))^2 - 733*a(n)^2 = -4 with b(n)=A098291(n) give all positive solutions of this Pell equation.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..340

Tanya Khovanova, Recursive Sequences

Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (731,-1).

FORMULA

a(n) = ((-1)^n)*S(2*n, 27*i) with the imaginary unit i and the S(n, x) = U(n, x/2) Chebyshev polynomials.

G.f.: (1-x)/(1-731*x+x^2).

a(n) = S(n, 731) - S(n-1, 731) = T(2*n+1, sqrt(733)/2)/(sqrt(733)/2), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120.

a(n) = 731*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=730. - Philippe Deléham, Nov 18 2008

EXAMPLE

All positive solutions of Pell equation x^2 - 733*y^2 = -4 are (27=27*1,1), (19764=27*732,730), (14447457=27*535091,533629), (10561071303=27*391150789,390082069), ...

MATHEMATICA

LinearRecurrence[{731, -1}, {1, 730}, 20] (* Harvey P. Dale, Nov 15 2013 *)

PROG

(PARI) my(x='x+O('x^20)); Vec((1-x)/(1-731*x+x^2)) \\ G. C. Greubel, Aug 01 2019

(MAGMA) I:=[1, 730]; [n le 2 select I[n] else 731*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019

(Sage) ((1-x)/(1-731*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019

(GAP) a:=[1, 730];; for n in [3..20] do a[n]:=731*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019

CROSSREFS

Cf. A098291.

Sequence in context: A224437 A259322 A085441 * A031525 A031705 A158396

Adjacent sequences:  A098289 A098290 A098291 * A098293 A098294 A098295

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 12:33 EST 2020. Contains 332279 sequences. (Running on oeis4.)