|
|
A114124
|
|
Decimal expansion of logarithm of A112302.
|
|
2
|
|
|
5, 0, 7, 8, 3, 3, 9, 2, 2, 8, 6, 8, 4, 3, 8, 3, 9, 2, 1, 8, 9, 0, 4, 1, 8, 4, 0, 7, 2, 2, 0, 7, 6, 3, 7, 4, 2, 4, 6, 2, 1, 8, 4, 3, 3, 4, 3, 2, 6, 0, 0, 9, 2, 9, 5, 3, 6, 6, 3, 9, 2, 7, 5, 0, 3, 5, 1, 5, 2, 2, 5, 8, 0, 8, 9, 7, 1, 0, 8, 6, 1, 8, 3, 6, 9, 0, 1, 5, 3, 8, 5, 5, 3, 5, 4, 4, 0, 7, 5, 4, 1, 8, 8, 8, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Table of n, a(n) for n=0..104.
Dawei Lu and Zexi Song, Some new continued fraction estimates of the Somos' quadratic recurrence constant, Journal of Number Theory, Volume 155, October 2015, Pages 36-45.
Dawei Lu, Xiaoguang Wang, Ruiqing Xu, Some New Exponential-Function Estimates of the Somos' Quadratic Recurrence Constant, Results in Mathematics (2019) Vol. 74, No. 1, 6.
Paul Erdős, Ronald L. Graham, Imre Z. Ruzsa and Ernst G. Straus, On the prime factors of C(2n, 𝑛), Mathematics of Computation, Vol. 29, No. 129 (1975), pp. 83-92.
Jörg Neunhäuserer, On the universality of Somos' constant, arXiv:2006.02882 [math.DS], 2020.
Eric Weisstein's World of Mathematics, Somos's Quadratic Recurrence Constant
Xu You, Di-Rong Chen, Improved continued fraction sequence convergent to the Somos' quadratic recurrence constant, Mathematical Analysis and Applications, Volume 436, Issue 1, 1 April 2016, Pages 513-520.
|
|
FORMULA
|
Sum_{n>=2} log(n)/2^n. - Jean-François Alcover, Apr 14 2014
Equals Lim_{k -> infinity} (1/k) Sum_{i=1..k} A334074(i)/A334075(i). - Amiram Eldar, Apr 14 2020
|
|
EXAMPLE
|
0.507833922...
|
|
MATHEMATICA
|
First@ RealDigits[-Derivative[1, 0][PolyLog][0, 1/2], 10, 105] (* Eric W. Weisstein, edited by Michael De Vlieger, Jan 21 2019 *)
|
|
PROG
|
(PARI) suminf(n=2, log(n)>>n) \\ Charles R Greathouse IV, Sep 08 2014
|
|
CROSSREFS
|
Cf. A112302, A334074, A334075.
Sequence in context: A200400 A190147 A108745 * A155827 A244045 A084248
Adjacent sequences: A114121 A114122 A114123 * A114125 A114126 A114127
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Eric W. Weisstein, Feb 08 2006
|
|
STATUS
|
approved
|
|
|
|