The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167667 Expansion of (1-x+4*x^2)/(1-2*x)^2. 11
 1, 3, 12, 36, 96, 240, 576, 1344, 3072, 6912, 15360, 33792, 73728, 159744, 344064, 737280, 1572864, 3342336, 7077888, 14942208, 31457280, 66060288, 138412032, 289406976, 603979776, 1258291200, 2617245696, 5435817984, 11274289152, 23353884672, 48318382080 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also the number of maximal and maximum cliques in the n-cube-connected cycles graph for n > 3. - Eric W. Weisstein, Dec 01 2017 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..3000 Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019. Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018 Eric Weisstein's World of Mathematics, Cube-Connected Cycle Graph Eric Weisstein's World of Mathematics, Maximal Clique Eric Weisstein's World of Mathematics, Maximum Clique Index entries for linear recurrences with constant coefficients, signature (4, -4). FORMULA a(0)=1, a(n) = 3*n*2^(n-1) for n>0. a(0)=1, a(1)=3, a(2)=12, a(n) = 4*a(n-1)-4*a(n-2) for n>2. a(n) = Sum_{k=0..n} A167666(n,k) * 2^k. G.f.: 1 + 3*x*G(0)/2, where G(k)= 1 + 1/(1 - x/(x + (k+1)/(2*k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013 a(0)=1, a(n) = Sum_{i=0..n} binomial(n,i) * (2n-i). - Wesley Ivan Hurt, Mar 20 2015 MAPLE A167667:=n->3*n*2^(n-1): (1, seq(A167667(n), n=1..30)); # Wesley Ivan Hurt, Mar 20 2015 MATHEMATICA CoefficientList[Series[(1 - x + 4*x^2)/(1 - 2*x)^2, {x, 0, 30}], x] (* Wesley Ivan Hurt, Mar 20 2015 *) Join[{1}, LinearRecurrence[{4, -4}, {3, 12}, 20]] (* Eric W. Weisstein, Dec 01 2017 *) Join[{1}, Table[3 2^(n - 1) n, {n, 20}]] (* Eric W. Weisstein, Dec 01 2017 *) CoefficientList[Series[(1 - x + 4 x^2)/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *) PROG (PARI) Vec((1-x+4*x^2)/(1-2*x)^2 + O(x^50)) \\ Michel Marcus, Mar 21 2015 (PARI) a(n) = if(n==0, 1, 3*n*2^(n-1)); \\ Altug Alkan, May 16 2018 (MAGMA) [1] cat [3*n*2^(n-1): n in [1..30]]; // Vincenzo Librandi, Mar 21 2015 CROSSREFS Cf. A167666. Sequence in context: A225259 A334891 A242526 * A292291 A215919 A027327 Adjacent sequences:  A167664 A167665 A167666 * A167668 A167669 A167670 KEYWORD nonn,easy AUTHOR Philippe Deléham, Nov 08 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 14:20 EDT 2020. Contains 334787 sequences. (Running on oeis4.)