The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078922 a(n) = 11*a(n-1) - a(n-2) with a(0)=1, a(1) = 10. 13
 1, 10, 109, 1189, 12970, 141481, 1543321, 16835050, 183642229, 2003229469, 21851881930, 238367471761, 2600190307441, 28363725910090, 309400794703549, 3375045015828949, 36816094379414890, 401601993157734841 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS All positive integer solutions of Pell equation (3*b(n))^2 - 13*a(n)^2 = -4 together with b(n)=A097783(n-1), n >= 1. a(n) = L(n-1,11), where L is defined as in A108299; see also A097783 for L(n,-11). - Reinhard Zumkeller, Jun 01 2005 Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6,7,8,9, A} which do not end in 0. - Tanya Khovanova, Jan 10 2007 REFERENCES R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321. LINKS G. C. Greubel, Table of n, a(n) for n = 1..960 S. Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234. Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13. Tanya Khovanova, Recursive Sequences Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16. J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. Index entries for linear recurrences with constant coefficients, signature (11,-1). FORMULA a(1)=1, a(2)=10 and for n > 2, a(n) = ceiling(g*f^n) where f = (11+sqrt(117))/2 and g = (1-3/sqrt(13))/2. - Benoit Cloitre, Jan 12 2003 a(n)*a(n+3) = 99 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004 a(n) = S(n-1, 11) - S(n-2, 11) = T(2*n-1, sqrt(13)/2)/(sqrt(13)/2). a(n+1) = ((-1)^n)*S(2*n, i*3), n >= 0, with the imaginary unit i and S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. G.f.: x*(1-x)/(1-11*x+x^2). a(n) = A006190(2*n-1). - Vladimir Reshetnikov, Sep 16 2016 EXAMPLE All positive solutions of the Pell equation x^2 - 13*y^2 = -4 are (x,y)= (3=3*1,1), (36=3*12,10), (393=3*131,109), (4287=3*1429,1189 ), ... MATHEMATICA LinearRecurrence[{11, -1}, {1, 10}, 20] (* Harvey P. Dale, Jan 26 2014 *) Table[Fibonacci[2n-1, 3], {n, 1, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *) PROG (PARI) a(n)=([0, 1; -1, 11]^n*[1; 1])[1, 1] \\ Charles R Greathouse IV, Jun 11 2015 (PARI) my(x='x+O('x^30)); Vec(x*(1-x)/(1-11*x+x^2)) \\ G. C. Greubel, Jan 12 2019 (MAGMA) m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( x*(1-x)/(1-11*x+x^2) )); // G. C. Greubel, Jan 12 2019 (Sage) (x*(1-x)/(1-11*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019 (GAP) a:=[1, 10];; for n in [3..30] do a[n]:=11*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 12 2019 CROSSREFS Row 11 of array A094954. Cf. similar sequences listed in A238379. Sequence in context: A320094 A267280 A015591 * A199760 A082181 A190919 Adjacent sequences:  A078919 A078920 A078921 * A078923 A078924 A078925 KEYWORD nonn,easy AUTHOR Nick Renton (ner(AT)nickrenton.com), Jan 11 2003 EXTENSIONS More terms from Benoit Cloitre, Jan 12 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 15 16:35 EST 2021. Contains 340187 sequences. (Running on oeis4.)