OFFSET
1,6
COMMENTS
T(n,k)=Number of permutations of n elements with 2k-2 odd displacements
Table starts:
.........1...........0............0............0............0............0
.........1...........1............0............0............0............0
.........2...........4............0............0............0............0
.........4..........16............4............0............0............0
........12..........72...........36............0............0............0
........36.........324..........324...........36............0............0
.......144........1728.........2592..........576............0............0
.......576........9216........20736.........9216..........576............0
......2880.......57600.......172800.......115200........14400............0
.....14400......360000......1440000......1440000.......360000........14400
.....86400.....2592000.....12960000.....17280000......6480000.......518400
....518400....18662400....116640000....207360000....116640000.....18662400
...3628800...152409600...1143072000...2540160000...1905120000....457228800
..25401600..1244678400..11202105600..31116960000..31116960000..11202105600
.203212800.11379916800.119489126400.398297088000.497871360000.238978252800
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..10000
MATHEMATICA
T[n_, k_]:=(Floor[n/2])!*(Floor[(n+1)/2])!*Binomial[Floor[n/2], k-1]*Binomial[Floor[(n+1)/2], k-1]; Table[Reverse[Table[T[n-k+1, k], {k, n}]], {n, 12}]//Flatten (* Stefano Spezia, Jul 12 2024 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, connection of formula with combinatoric problem via N. J. A. Sloane in the Sequence Fans Mailing List, Jun 02 2013
STATUS
approved