login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185146
Expansion of q^-2 * phi(q) * phi(q^4) / psi(q^8)^2 in powers of q where phi(), psi() are Ramanujan theta functions.
1
1, 2, 0, 0, 4, 4, 0, 0, 2, -2, 0, 0, -8, -4, 0, 0, -1, 6, 0, 0, 20, 4, 0, 0, -2, -8, 0, 0, -40, -8, 0, 0, 3, 10, 0, 0, 72, 16, 0, 0, 2, -16, 0, 0, -128, -20, 0, 0, -4, 22, 0, 0, 220, 24, 0, 0, -4, -30, 0, 0, -360, -36, 0, 0, 5, 44, 0, 0, 576, 52, 0, 0, 8
OFFSET
-2,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
FORMULA
Expansion of eta(q^2)^5 * eta(q^8)^7 / (eta(q)^2 * eta(q^4)^4 * eta(q^16)^6) in powers of q.
Euler transform of period 16 sequence [ 2, -3, 2, 1, 2, -3, 2, -6, 2, -3, 2, 1, 2, -3, 2, 0, ...].
a(4*n) = a(4*n + 1) = 0. a(4*n - 2) = A029841(n). a(4*n - 1) = 2 * A029839(n).
EXAMPLE
q^-2 + 2*q^-1 + 4*q^2 + 4*q^3 + 2*q^6 - 2*q^7 - 8*q^10 - 4*q^11 - q^14 + ...
MATHEMATICA
f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; A185146[n_] := SeriesCoefficient[(f[x, x]*f[x^4, x^4])/(x*f[x^8, x^24])^2, {x, 0, n}]; Table[A185146[n], {n, -2, 50}] (* G. C. Greubel, Jun 23 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<-2, 0, n += 2; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^4 * eta(x^16 + A)^6), n))}
CROSSREFS
Sequence in context: A341654 A072740 A226288 * A080964 A367054 A134014
KEYWORD
sign
AUTHOR
Michael Somos, Feb 28 2012
STATUS
approved