login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298338
a(n) = a(n-1) + a(n-2) + a([n/2]), where a(0) = 1, a(1) = 1, a(2) = 1.
43
1, 1, 1, 3, 5, 9, 17, 29, 51, 85, 145, 239, 401, 657, 1087, 1773, 2911, 4735, 7731, 12551, 20427, 33123, 53789, 87151, 141341, 228893, 370891, 600441, 972419, 1573947, 2548139, 4123859, 6674909, 10801679, 17481323, 28287737, 45776791, 74072259, 119861601
OFFSET
0,4
COMMENTS
a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio (A001622), so that (a(n)) has the growth rate of the Fibonacci numbers (A000045). Guide to related sequences:
****
sequence recurrence a(0),a(1),a(2)
A298338 a(n) = a(n-1)+a(n-2)+a([n/2]) 1,1,1
A298339 a(n) = a(n-1)+a(n-2)+a([n/2]) 1,2,3
A298400 a(n) = a(n-1)+a(n-2)-a([n/2]) 1,1,1
A298401 a(n) = a(n-1)+a(n-2)-a([n/2]) 1,2,3
A298340 a(n) = a(n-1)+a(n-2)+a([n/3]) 1,1,1
A298341 a(n) = a(n-1)+a(n-2)+a([n/3]) 1,2,3
A298342 a(n) = a(n-1)+a(n-2)+a([2*n/3]) 1,1,1
A298343 a(n) = a(n-1)+a(n-2)+a([2*n/3]) 1,2,3
A298344 a(n) = a(n-1)+a(n-2)+a([n/3])+a([2*n/3]) 1,1,1
A298345 a(n) = a(n-1)+a(n-2)+a([n/3])+a([2*n/3]) 1,2,3
A298346 a(n) = a(n-1)+a(n-2)+2*a([n/2]) 1,1,1
A298347 a(n) = a(n-1)+a(n-2)+2*a([n/2]) 1,2,3
A298348 a(n) = a(n-1)+a(n-2)+2*a([(n+1)/2]) 1,1,1
A298349 a(n) = a(n-1)+a(n-2)+2*a([(n+1)/2]) 1,2,3
A298350 a(n) = a(n-1)+a(n-2)+2*a(ceiling(n/2)) 1,1,1
A298351 a(n) = a(n-1)+a(n-2)+2*a(ceiling(n/2)) 1,2,3
A298352 a(n) = a(n-1)+a(n-2)+a([(n-1)/2]) 1,1,1
A298353 a(n) = a(n-1)+a(n-2)+a([(n-1)/2]) 1,2,3
A298354 a(n) = a(n-1)+a(n-2)+2*a([(n-1)/2]) 1,1,1
A298355 a(n) = a(n-1)+a(n-2)+2*a([(n-1)/2]) 1,2,3
A298356 a(n) = a(n-1)+a(n-2)+a([n/2])+a([n/3])+...+a([n/n]) 1,1,1
A298357 a(n) = a(n-1)+a(n-2)+a([n/2])+a([n/3])+...+a([n/n]) 1,2,3
A298369 a(n) = a(n-1)+a(n-2)+2*a([n/2])+3*a([n/3])+...+n*a([n/n]) 1,1,1
A298370 a(n) = a(n-1)+a(n-2)+2*a([n/2])+3*a([n/3])+...+n*a([n/n]) 1,2,3
A298402 a(n) = 2*a(n-1)-a(n-3)+a([n/2]) 1,1,1
A298403 a(n) = 2*a(n-1)-a(n-3)+a([n/2]) 1,2,3
A298404 a(n) = 2*a(n-1)-a(n-3)+a(ceiling(n/2)) 1,1,1
A298405 a(n) = 2*a(n-1)-a(n-3)+a(ceiling(n/2)) 1,2,3
A298406 a(n) = 2*a(n-1)-a(n-3)+a([n/2])+a([n/3])+...+a([n/n]) 1,1,1
A298407 a(n) = 2*a(n-1)-a(n-3)+a([n/2])+a([n/3])+...+a([n/n]) 1,2,3
A298408 a(n) = 2*a(n-1)-a(n-3)+2*a([n/2])+3*a([n/3])+...+n*a([n/n]) 1,1,1
A298409 a(n) = 2*a(n-1)-a(n-3)+2*a([n/2])+3*a([n/3])+...+n*a([n/n]) 1,2,3
LINKS
Evangelos G. Filothodoros, Strongly coupled fermions in odd dimensions and the running cut-off Lambda_d, arXiv:2306.14652 [hep-th], 2023.
MATHEMATICA
a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[Floor[n/2]];
Table[a[n], {n, 0, 30}] (* A298338 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 09 2018
STATUS
approved