OFFSET
0,4
COMMENTS
a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio (A001622), so that (a(n)) has the growth rate of the Fibonacci numbers (A000045). Guide to related sequences:
****
sequence recurrence a(0),a(1),a(2)
A298338 a(n) = a(n-1)+a(n-2)+a([n/2]) 1,1,1
A298339 a(n) = a(n-1)+a(n-2)+a([n/2]) 1,2,3
A298400 a(n) = a(n-1)+a(n-2)-a([n/2]) 1,1,1
A298401 a(n) = a(n-1)+a(n-2)-a([n/2]) 1,2,3
A298340 a(n) = a(n-1)+a(n-2)+a([n/3]) 1,1,1
A298341 a(n) = a(n-1)+a(n-2)+a([n/3]) 1,2,3
A298342 a(n) = a(n-1)+a(n-2)+a([2*n/3]) 1,1,1
A298343 a(n) = a(n-1)+a(n-2)+a([2*n/3]) 1,2,3
A298344 a(n) = a(n-1)+a(n-2)+a([n/3])+a([2*n/3]) 1,1,1
A298345 a(n) = a(n-1)+a(n-2)+a([n/3])+a([2*n/3]) 1,2,3
A298346 a(n) = a(n-1)+a(n-2)+2*a([n/2]) 1,1,1
A298347 a(n) = a(n-1)+a(n-2)+2*a([n/2]) 1,2,3
A298348 a(n) = a(n-1)+a(n-2)+2*a([(n+1)/2]) 1,1,1
A298349 a(n) = a(n-1)+a(n-2)+2*a([(n+1)/2]) 1,2,3
A298350 a(n) = a(n-1)+a(n-2)+2*a(ceiling(n/2)) 1,1,1
A298351 a(n) = a(n-1)+a(n-2)+2*a(ceiling(n/2)) 1,2,3
A298352 a(n) = a(n-1)+a(n-2)+a([(n-1)/2]) 1,1,1
A298353 a(n) = a(n-1)+a(n-2)+a([(n-1)/2]) 1,2,3
A298354 a(n) = a(n-1)+a(n-2)+2*a([(n-1)/2]) 1,1,1
A298355 a(n) = a(n-1)+a(n-2)+2*a([(n-1)/2]) 1,2,3
A298356 a(n) = a(n-1)+a(n-2)+a([n/2])+a([n/3])+...+a([n/n]) 1,1,1
A298357 a(n) = a(n-1)+a(n-2)+a([n/2])+a([n/3])+...+a([n/n]) 1,2,3
A298369 a(n) = a(n-1)+a(n-2)+2*a([n/2])+3*a([n/3])+...+n*a([n/n]) 1,1,1
A298370 a(n) = a(n-1)+a(n-2)+2*a([n/2])+3*a([n/3])+...+n*a([n/n]) 1,2,3
A298402 a(n) = 2*a(n-1)-a(n-3)+a([n/2]) 1,1,1
A298403 a(n) = 2*a(n-1)-a(n-3)+a([n/2]) 1,2,3
A298404 a(n) = 2*a(n-1)-a(n-3)+a(ceiling(n/2)) 1,1,1
A298405 a(n) = 2*a(n-1)-a(n-3)+a(ceiling(n/2)) 1,2,3
A298406 a(n) = 2*a(n-1)-a(n-3)+a([n/2])+a([n/3])+...+a([n/n]) 1,1,1
A298407 a(n) = 2*a(n-1)-a(n-3)+a([n/2])+a([n/3])+...+a([n/n]) 1,2,3
A298408 a(n) = 2*a(n-1)-a(n-3)+2*a([n/2])+3*a([n/3])+...+n*a([n/n]) 1,1,1
A298409 a(n) = 2*a(n-1)-a(n-3)+2*a([n/2])+3*a([n/3])+...+n*a([n/n]) 1,2,3
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
Evangelos G. Filothodoros, Strongly coupled fermions in odd dimensions and the running cut-off Lambda_d, arXiv:2306.14652 [hep-th], 2023.
MATHEMATICA
a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[Floor[n/2]];
Table[a[n], {n, 0, 30}] (* A298338 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 09 2018
STATUS
approved