login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284128
Hosoya triangle of Fermat Lucas type, read by rows.
0
9, 15, 15, 27, 25, 27, 51, 45, 45, 51, 99, 85, 81, 85, 99, 195, 165, 153, 153, 165, 195, 387, 325, 297, 289, 297, 325, 387, 771, 645, 585, 561, 561, 585, 645, 771, 1539, 1285, 1161, 1105, 1089, 1105, 1161, 1285, 1539, 3075, 2565, 2313, 2193, 2145, 2145, 2193, 2313, 2565, 3075
OFFSET
9,1
LINKS
R. Florez, R. Higuita and L. Junes, GCD property of the generalized star of David in the generalized Hosoya triangle, J. Integer Seq., 17 (2014), Article 14.3.6, 17 pp.
R. Florez and L. Junes, GCD properties in Hosoya's triangle, Fibonacci Quart. 50 (2012), 163-174.
H. Hosoya, Fibonacci Triangle, The Fibonacci Quarterly, 14;2, 1976, 173-178.
Wikipedia, Hosoya triangle
FORMULA
T(n,k) = (2^k + 1)*(2^(n - k + 1) + 1) n > 0, 0 < k <= n.
EXAMPLE
Triangle begins:
9;
15, 15;
27, 25, 27;
51, 45, 45, 51;
99, 85, 81, 85, 99;
195, 165, 153, 153, 165, 195;
...
MATHEMATICA
Table[(2^k + 1) (2^(n - k + 1) + 1), {n, 10}, {k, n}] // Flatten (* Indranil Ghosh, Apr 02 2017 *)
PROG
(PARI) T(n, k) = (2^k + 1)*(2^(n - k + 1) + 1);
tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print()); \\ Michel Marcus, Apr 02 2017
(Python)
for n in range(1, 11):
....print [(2**k + 1) * (2**(n - k + 1) + 1) for k in range(1, n + 1)] # Indranil Ghosh, Apr 02 2017
CROSSREFS
Sequence in context: A346609 A232395 A184048 * A058957 A257409 A105882
KEYWORD
nonn,tabl,changed
AUTHOR
Rigoberto Florez, Mar 20 2017
STATUS
approved