login
A075326
Anti-Fibonacci numbers: start with a(0) = 0, and extend by the rule that the next term is the sum of the two smallest numbers that are not in the sequence nor were used to form an earlier sum.
22
0, 3, 9, 13, 18, 23, 29, 33, 39, 43, 49, 53, 58, 63, 69, 73, 78, 83, 89, 93, 98, 103, 109, 113, 119, 123, 129, 133, 138, 143, 149, 153, 159, 163, 169, 173, 178, 183, 189, 193, 199, 203, 209, 213, 218, 223, 229, 233, 238, 243, 249, 253, 258, 263, 269, 273, 279, 283
OFFSET
0,2
COMMENTS
In more detail, the sequence is constructed as follows: Start with a(0) = 0. The missing numbers are 1 2 3 4 5 6 ... Add the first two, and we get 3, which is therefore a(1). Cross 1, 2, and 1+2=3 off the missing list. The first two missing numbers are now 4 and 5, so a(2) = 4+5 = 9. Cross off 4,5,9 from the missing list. Repeat.
In other words, this is the sum of consecutive pairs in the sequence 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, ..., (A249031) the complement to the present one in the natural numbers. For example, a(1)=1+2=3, a(2)=4+5=9, a(3)=6+7=13, ... - Philippe Lallouet (philip.lallouet(AT)orange.fr), May 08 2008
The new definition is due to Philippe Lalloue (philip.lallouet(AT)orange.fr), May 08 2008, while the name "anti-Fibonacci numbers" is due to D. R. Hofstadter, Oct 23 2014.
Original definition: second members of pairs in A075325.
If instead we take the sum of the last used non-term and the most recent (i.e., 1+2, 2+4, 4+5, 5+7, etc.), we get A008585. - Jon Perry, Nov 01 2014
The sequences a = A075325, b = A047215, and c = A075326 are the solutions of the system of complementary equations defined recursively as follows:
a(n) = least new,
b(n) = least new,
c(n) = a(n) + b(n),
where "least new k" means the least positive integer not yet placed. For anti-tribonacci numbers, see A265389; for anti-tetranacci, see A299405. - Clark Kimberling, May 01 2018
We see the Fibonacci numbers 3, 13, 89 and 233 occur in this sequence of anti-Fibonacci numbers. Are there infinitely many Fibonacci numbers occurring in (a(n))? The answer is yes: at least 13% of the Fibonacci numbers occur in (a(n)). This follows from Thomas Zaslavsky's formula, which implies that the sequence A017305 = (10n+3) is a subsequence of (a(n)). The Fibonacci sequence A000045 modulo 10 equals A003893, and has period 60. In this period, the number 3 occurs 8 times. - Michel Dekking, Feb 14 2019
LINKS
D. R. Hofstadter, Anti-Fibonacci numbers, Oct 23 2014.
Thomas Zaslavsky, Anti-Fibonacci Numbers: A Formula, Sep 26 2016
FORMULA
See Zaslavsky (2016) link.
MAPLE
# Maple code for M+1 terms of sequence, from N. J. A. Sloane, Oct 26 2014
c:=0; a:=[c]; t:=0; M:=100;
for n from 1 to M do
s:=t+1; if s in a then s:=s+1; fi;
t:=s+1; if t in a then t:=t+1; fi;
c:=s+t;
a:=[op(a), c];
od:
[seq(a[n], n=1..nops(a))];
MATHEMATICA
(* Three sequences a, b, c as in Comments *)
z = 200;
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
a = {}; b = {}; c = {};
Do[AppendTo[a,
mex[Flatten[{a, b, c}], If[Length[a] == 0, 1, Last[a]]]];
AppendTo[b, mex[Flatten[{a, b, c}], Last[a]]];
AppendTo[c, Last[a] + Last[b]], {z}];
Take[a, 100] (* A075425 *)
Take[b, 100] (* A047215 *)
Take[c, 100] (* A075326 *)
Grid[{Join[{"n"}, Range[0, 20]], Join[{"a(n)"}, Take[a, 21]],
Join[{"b(n)"}, Take[b, 21]], Join[{"c(n)"}, Take[c, 21]]},
Alignment -> ".",
Dividers -> {{2 -> Red, -1 -> Blue}, {2 -> Red, -1 -> Blue}}]
(* Peter J. C. Moses, Apr 26 2018 *)
********
(* Sequence "a" via A035263 substitutions *)
Accumulate[Prepend[Flatten[Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {1, 0}}] &, {0}, 7] /. Thread[{0, 1} -> {{5, 5}, {6, 4}}]], 3]]
(* Peter J. C. Moses, May 01 2018 *)
********
(* Sequence "a" via Hofstadter substitutions; see his 2014 link *)
morph = Rest[Nest[Flatten[#/.{1->{3}, 3->{1, 1, 3}}]&, {1}, 6]]
hoff = Accumulate[Prepend[Flatten[morph/.Thread[{1, 3}->{{6, 4, 5, 5}, {6, 4, 6, 4, 6, 4, 5, 5}}]], 3]]
(* Peter J. C. Moses, May 01 2018 *)
PROG
(Haskell)
import Data.List ((\\))
a075326 n = a075326_list !! n
a075326_list = 0 : f [1..] where
f ws@(u:v:_) = y : f (ws \\ [u, v, y]) where y = u + v
-- Reinhard Zumkeller, Oct 26 2014
(Python)
def aupton(nn):
alst, disallowed, mink = [0], {0}, 1
for n in range(1, nn+1):
nextk = mink + 1
while nextk in disallowed: nextk += 1
an = mink + nextk
alst.append(an)
disallowed.update([mink, nextk, an])
mink = nextk + 1
while mink in disallowed: mink += 1
return alst
print(aupton(57)) # Michael S. Branicky, Jan 31 2022
(Python)
def A075326(n): return 5*n-1-int((n|(~((m:=n-1>>1)+1)&m).bit_length())&1) if n else 0 # Chai Wah Wu, Sep 11 2024
CROSSREFS
Cf. A008585, A075325, A075327, A249031, A249032 (first differences), A000045.
Sequence in context: A240108 A163595 A088090 * A298870 A095234 A240240
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 16 2002
EXTENSIONS
More terms from David Wasserman, Jan 16 2005
Entry revised (including the addition of an initial 0) by N. J. A. Sloane, Oct 26 2014 and Sep 26 2016 (following a suggestion from Thomas Zaslavsky)
STATUS
approved