login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075323
Pair the odd primes so that the n-th pair is (p, p+2n) where p is the smallest prime not included earlier such that p and p+2n are primes and p+2n also does not occur earlier: (3, 5), (7, 11), (13, 19), (23, 31), (37, 47), (17, 29), ... This lists the successive pairs in order.
5
3, 5, 7, 11, 13, 19, 23, 31, 37, 47, 17, 29, 53, 67, 43, 59, 61, 79, 83, 103, 109, 131, 73, 97, 101, 127, 139, 167, 41, 71, 149, 181, 157, 191, 137, 173, 113, 151, 193, 233, 197, 239, 179, 223, 211, 257, 229, 277, 263, 313, 199
OFFSET
1,1
COMMENTS
Question: Is every odd prime a member of some pair?
2683 = A065091(388) seems to be missing, as presumably A247233(388)=0; but if A247233(n) > 0: a(A247233(n)) = A065091(n) = A000040(n+1). - Reinhard Zumkeller, Nov 29 2014
LINKS
MAPLE
# A075321p implemented in A075321
A075323 := proc(n)
if type(n, 'odd') then
op(1, A075321p((n+1)/2)) ;
else
op(2, A075321p(n/2)) ;
end if;
end proc:
seq(A075323(n), n=1..60) ; # R. J. Mathar, Nov 26 2014
MATHEMATICA
A075321p[n_] := A075321p[n] = Module[{prevlist, i, p, q}, If[n == 1, Return[{3, 5}], prevlist = Array[A075321p, n - 1] // Flatten]; For[i = 2, True, i++, p = Prime[i]; If[FreeQ[prevlist, p], q = p + 2*n; If[PrimeQ[q] && FreeQ[prevlist, q], Return[{p, q}]]]]];
A075323[n_] := If[OddQ[n], A075321p[(n+1)/2][[1]], A075321p[n/2][[2]]];
Array[A075323, 50] (* Jean-François Alcover, Feb 12 2018, after R. J. Mathar *)
PROG
(Haskell)
import Data.List ((\\))
a075323 n = a075323_list !! (n-1)
a075323_list = f 1 [] $ tail a000040_list where
f k ys qs = g qs where
g (p:ps) | a010051' pk == 0 || pk `elem` ys = g ps
| otherwise = p : pk : f (k + 1) (p:pk:ys) (qs \\ [p, pk])
where pk = p + 2 * k
-- Reinhard Zumkeller, Nov 29 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 14 2002
EXTENSIONS
Corrected by R. J. Mathar, Nov 26 2014
STATUS
approved