login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299405
Solution (a(n)) of the system of 5 complementary equations in Comments.
6
1, 5, 9, 14, 18, 22, 27, 31, 35, 39, 43, 48, 52, 56, 60, 65, 69, 73, 77, 82, 86, 90, 95, 99, 103, 107, 111, 116, 120, 124, 128, 133, 137, 141, 145, 150, 154, 158, 163, 167, 171, 175, 179, 184, 188, 192, 196, 201, 205, 209, 213, 218, 222, 226, 231, 235, 239
OFFSET
0,2
COMMENTS
Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3;:
a(n) = least new;
b(n) = least new;
c(n) = least new;
d(n) = least new;
e(n) = a(n) + b(n) + c(n) + d(n);
where "least new k" means the least positive integer not yet placed.
***
Conjecture: for all n >= 0,
0 <= 17n - 11 - 4 a(n) <= 4
0 <= 17n - 7 - 4 b(n) <= 4
0 <= 17n - 3 - 4 c(n) <= 3
0 <= 17n + 1 - 4 d(n) <= 3
0 <= 17n - 5 - e(n) <= 3
***
The sequences a,b,c,d,e partition the positive integers. The sequence e can be called the "anti-tetranacci sequence"; see A075326 (anti-Fibonacci numbers) and A265389 (anti-tribonacci numbers).
LINKS
EXAMPLE
n: 0 1 2 3 4 5 6 7 8 9
a: 1 5 9 14 18 22 27 31 35 39
b: 2 6 11 15 19 23 28 32 36 40
c: 3 7 12 16 20 24 29 33 37 41
d: 4 8 13 17 21 25 30 34 38 42
e: 10 26 45 62 78 94 114 130 146 162
MATHEMATICA
z = 200;
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
a = {1}; b = {2}; c = {3}; d = {4}; e = {}; AppendTo[e,
Last[a] + Last[b] + Last[c] + Last[d]];
Do[{AppendTo[a, mex[Flatten[{a, b, c, d, e}], 1]],
AppendTo[b, mex[Flatten[{a, b, c, d, e}], 1]],
AppendTo[c, mex[Flatten[{a, b, c, d, e}], 1]],
AppendTo[d, mex[Flatten[{a, b, c, d, e}], 1]],
AppendTo[e, Last[a] + Last[b] + Last[c] + Last[d]]}, {z}];
Take[a, 100] (* A299405 *)
Take[b, 100] (* A299637 *)
Take[c, 100] (* A299638 *)
Take[d, 100] (* A299641 *)
Take[e, 100] (* A299409 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 22 2018
STATUS
approved