login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Solution (a(n)) of the system of 5 complementary equations in Comments.
6

%I #8 May 01 2018 03:00:18

%S 1,5,9,14,18,22,27,31,35,39,43,48,52,56,60,65,69,73,77,82,86,90,95,99,

%T 103,107,111,116,120,124,128,133,137,141,145,150,154,158,163,167,171,

%U 175,179,184,188,192,196,201,205,209,213,218,222,226,231,235,239

%N Solution (a(n)) of the system of 5 complementary equations in Comments.

%C Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3;:

%C a(n) = least new;

%C b(n) = least new;

%C c(n) = least new;

%C d(n) = least new;

%C e(n) = a(n) + b(n) + c(n) + d(n);

%C where "least new k" means the least positive integer not yet placed.

%C ***

%C Conjecture: for all n >= 0,

%C 0 <= 17n - 11 - 4 a(n) <= 4

%C 0 <= 17n - 7 - 4 b(n) <= 4

%C 0 <= 17n - 3 - 4 c(n) <= 3

%C 0 <= 17n + 1 - 4 d(n) <= 3

%C 0 <= 17n - 5 - e(n) <= 3

%C ***

%C The sequences a,b,c,d,e partition the positive integers. The sequence e can be called the "anti-tetranacci sequence"; see A075326 (anti-Fibonacci numbers) and A265389 (anti-tribonacci numbers).

%H Clark Kimberling, <a href="/A299405/b299405.txt">Table of n, a(n) for n = 0..1000</a>

%e n: 0 1 2 3 4 5 6 7 8 9

%e a: 1 5 9 14 18 22 27 31 35 39

%e b: 2 6 11 15 19 23 28 32 36 40

%e c: 3 7 12 16 20 24 29 33 37 41

%e d: 4 8 13 17 21 25 30 34 38 42

%e e: 10 26 45 62 78 94 114 130 146 162

%t z = 200;

%t mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);

%t a = {1}; b = {2}; c = {3}; d = {4}; e = {}; AppendTo[e,

%t Last[a] + Last[b] + Last[c] + Last[d]];

%t Do[{AppendTo[a, mex[Flatten[{a, b, c, d, e}], 1]],

%t AppendTo[b, mex[Flatten[{a, b, c, d, e}], 1]],

%t AppendTo[c, mex[Flatten[{a, b, c, d, e}], 1]],

%t AppendTo[d, mex[Flatten[{a, b, c, d, e}], 1]],

%t AppendTo[e, Last[a] + Last[b] + Last[c] + Last[d]]}, {z}];

%t Take[a, 100] (* A299405 *)

%t Take[b, 100] (* A299637 *)

%t Take[c, 100] (* A299638 *)

%t Take[d, 100] (* A299641 *)

%t Take[e, 100] (* A299409 *)

%Y Cf. A036554, A299634, A299637, A299638, A299641, A299409.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Apr 22 2018