The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299409 Solution (e(n)) of the system of 5 complementary equations in Comments. 6
 10, 26, 45, 62, 78, 94, 114, 130, 146, 162, 180, 198, 214, 230, 248, 266, 282, 298, 317, 334, 350, 366, 386, 402, 418, 434, 451, 470, 486, 502, 520, 538, 554, 570, 589, 606, 622, 638, 658, 674, 690, 706, 725, 742, 758, 774, 792, 810, 826, 842, 861, 878, 894 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3: a(n) = least new; b(n) = least new; c(n) = least new; d(n) = least new; e(n) = a(n) + b(n) + c(n) + d(n); where "least new k" means the least positive integer not yet placed. *** Conjecture: for all n >= 0, 0 <= 17n - 11 - 4 a(n) <= 4 0 <= 17n - 7 - 4 b(n) <= 4 0 <= 17n - 3 - 4 c(n) <= 3 0 <= 17n + 1 - 4 d(n) <= 3 0 <= 17n - 5 - e(n) <= 3 *** The sequences a,b,c,d,e partition the positive integers.  The sequence e can be called the "anti-tetranacci sequence"; see A075326 (anti-Fibonacci numbers) and A265389 (anti-tribonacci numbers). LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 EXAMPLE n:   0  1   2    3   4   5   6   7   8   9 a:   1  5   9   14  18  22  27  31  35  39 b:   2  6   11  15  19  23  28  32  36  40 c:   3  7   12  16  20  24  29  33  37  41 d:   4  8   13  17  21  25  30  34  38  42 e:  10  26  45  62  78  94 114 130 146 162 MATHEMATICA (* Program 1: sequences a, b, c, d, e generated from the complementary equations *) z = 200; mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); a = {1}; b = {2}; c = {3}; d = {4}; e = {}; AppendTo[e, Last[a] + Last[b] + Last[c] + Last[d]]; Do[{AppendTo[a, mex[Flatten[{a, b, c, d, e}], 1]],    AppendTo[b, mex[Flatten[{a, b, c, d, e}], 1]],    AppendTo[c, mex[Flatten[{a, b, c, d, e}], 1]],    AppendTo[d, mex[Flatten[{a, b, c, d, e}], 1]],    AppendTo[e, Last[a] + Last[b] + Last[c] + Last[d]]}, {z}]; Take[a, 100]  (* A299405 *) Take[b, 100]  (* A299637 *) Take[c, 100]  (* A299638 *) Take[d, 100]  (* A299641 *) Take[e, 100]  (* A299409 *) (* Program 2: sequence e generated by iterating a morphism *) morph = Nest[Flatten[# /. Thread[{0, 1, 2, 3} -> {{2, 3, 3, 1}, {2, 3, 2, 1}, {2, 3, 1, 1}, {2, 3, 0, 1}}]] &, {0}, 9]; A299409 = Accumulate[Prepend[Drop[Flatten[morph /. Thread[{0, 1, 2, 3} -> {{1, 1, 2, 4}, {1, 1, 3, 3}, {1, 1, 4, 2}, {1, 1, 5, 1}}]], 1] + 15, 10]]; Take[A299409, 100]  (* Peter J. C. Moses, May 04 2018 *) CROSSREFS Cf. A036554, A299634, A299405, A299637,  A299638, A299641. Sequence in context: A223451 A229309 A044452 * A198017 A137351 A134406 Adjacent sequences:  A299406 A299407 A299408 * A299410 A299411 A299412 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 04:15 EST 2022. Contains 350565 sequences. (Running on oeis4.)