login
A026356
a(n) = floor((n-1)*phi) + n + 1, n > 0, where phi = (1+sqrt(5))/2.
10
2, 4, 7, 9, 12, 15, 17, 20, 22, 25, 28, 30, 33, 36, 38, 41, 43, 46, 49, 51, 54, 56, 59, 62, 64, 67, 70, 72, 75, 77, 80, 83, 85, 88, 91, 93, 96, 98, 101, 104, 106, 109, 111, 114, 117, 119, 122, 125, 127, 130, 132, 135, 138, 140, 143, 145
OFFSET
1,1
COMMENTS
Greatest k such that s(k) = n+1, where s = A026354.
Positions of 1 in A189661.
a(n+1) = A001950(n)-2, the Upper Wythoff sequence shifted by 2. - Michel Dekking, Oct 18 2018
LINKS
MATHEMATICA
(See A189661.)
PROG
(PARI) r = (1 + sqrt(5))/2;
a(n) = if(n<1, 1, floor((n - 1)* r) + n + 1);
for(n=1, 100, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 25 2017
(Python)
from sympy import sqrt
import math
r=(1 + sqrt(5))/2
def a(n): return 1 if n<1 else int(math.floor((n - 1)*r)) + n + 1
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017
(Python)
from math import isqrt
def A026356(n): return (n+1+isqrt(5*(n-1)**2)>>1)+n # Chai Wah Wu, Aug 11 2022
CROSSREFS
Cf. A000201, A026351, etc. Apart from initial terms, same as A007066. Complement is A189662, closely related to A026355.
Sequence in context: A188045 A247912 A186321 * A184735 A184583 A189379
KEYWORD
nonn
EXTENSIONS
Data corrected by Michel Dekking, Oct 18 2018
STATUS
approved