login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334293
First quadrisection of Padovan sequence.
1
1, 0, 2, 5, 16, 49, 151, 465, 1432, 4410, 13581, 41824, 128801, 396655, 1221537, 3761840, 11584946, 35676949, 109870576, 338356945, 1042002567, 3208946545, 9882257736, 30433357674, 93722435101, 288627200960, 888855064897, 2737314167775, 8429820731201, 25960439030624
OFFSET
0,3
FORMULA
a(n) = A000931(4n).
a(n) = A099529(2n).
a(n) = Sum_{k=0..n} binomial(2*n-k-1, 2*k-1).
a(n) = 2*a(n-1)+3*a(n-2)+a(n-3), a(0)=1, a(1)=0, a(2)=2 for n>=3.
G.f.: (1 - 2*x - x^2) / (1 - 2*x - 3*x^2 - x^3). - Colin Barker, Apr 27 2020
EXAMPLE
For n=3, a(3) = 2*a(2) + 3*a(1) + a(0) = 2*2 + 3*0 + 1 = 5.
PROG
(PARI) Vec((1 - 2*x - x^2) / (1 - 2*x - 3*x^2 - x^3) + O(x^30)) \\ Colin Barker, Apr 27 2020
CROSSREFS
Quadrisection of A000931.
Bisection (even part) of A099529.
Sequence in context: A210696 A005497 A148381 * A278274 A148382 A148383
KEYWORD
nonn,easy
AUTHOR
Oboifeng Dira, Apr 21 2020
STATUS
approved