OFFSET
1,2
COMMENTS
Among quadratic polynomials in k of the form a*k^2 + a*k - 1 the value a=70 gives the most primes for any a in the range 1<=a<=300, at least up to k=40000. Here a and k are positive integers. Other "good" values of a are a=250, a=99, and a=19.
LINKS
N. Boston et M. L.Greenwood, Quadratics representing primes, Amer. Math. Monthly 102:7 (1995), 595-599.
François Dress and Michel Olivier, Polynômes prenant des valeurs premières, Experimental Mathematics, Volume 8, Issue 4 (1999), 319-338.
G. W. Fung and H. C. Williams, Quadratic polynomials which have a high density of prime values, Math. Comput. 55(191) (1990), 345-353.
R. A. Mollin, Prime-Producing Quadratics, The American Mathematical Monthly, Vol. 104, No. 6 (Jun. - Jul., 1997), pp. 529-544.
EXAMPLE
For k=1, 70*k^2 + 70*k - 1 = 70*1^2 + 70*1 - 1 = 139, which is prime, so 1 is in the sequence.
MAPLE
a:=proc(n) if isprime(70*n^2+70*n-1) then n else NULL end if end proc;
seq(a(n), n=1..100);
MATHEMATICA
Select[Range@ 100, PrimeQ[70 #^2 + 70 # - 1] &] (* Michael De Vlieger, May 26 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
James R. Buddenhagen, Apr 21 2020
STATUS
approved