login
A238110
Maximum size of a class of binary words of length n having the same prefix normal form.
0
1, 2, 3, 4, 5, 6, 8, 10, 12, 18, 24, 30, 40, 60, 80, 111, 165, 246, 369, 596, 894, 1406, 2109, 3462, 5193, 8528, 12792, 21390, 32085, 53206, 79809, 135064, 202596
OFFSET
1,2
LINKS
Péter Burcsi, Gabriele Fici, Zsuzsanna Lipták, Rajeev Raman, and Joe Sawada, Generating a Gray code for prefix normal words in amortized polylogarithmic time per word, arXiv:2003.03222 [cs.DS], 2020.
Peter Burcsi, G. Fici, Z. Lipták, F. Ruskey, and J. Sawada, On prefix normal words and prefix normal forms, Preprint, 2016.
Ferdinando Cicalese, Zsuzsanna Lipták, and Massimiliano Rossi, Bubble-Flip—A new generation algorithm for prefix normal words, arXiv:1712.05876 [cs.DS], 2017-2018; Theoretical Computer Science, Volume 743, 26 September 2018, Pages 38-52.
Ferdinando Cicalese, Zsuzsanna Lipták, and Massimiliano Rossi, On Infinite Prefix Normal Words, arXiv:1811.06273 [math.CO], 2018.
G. Fici and Zs. Lipták, On Prefix Normal Words (see Table 5).
G. Fici and Zs. Lipták, On Prefix Normal Words, Developments in Language Theory 2011, Lecture Notes in Computer Science 6795, 228-238.
Pamela Fleischmann, On Special k-Spectra, k-Locality, and Collapsing Prefix Normal Words, Ph.D. Dissertation, Kiel University (Germany, 2021).
Pamela Fleischmann, Mitja Kulczynski, and Dirk Nowotka, On Collapsing Prefix Normal Words, arXiv:1905.11847 [cs.FL], 2019.
Pamela Fleischmann, Mitja Kulczynski, Dirk Nowotka, and Danny Bøgsted Poulsen, On Collapsing Prefix Normal Words, Language and Automata Theory and Applications (LATA 2020) LNCS Vol. 12038, Springer, Cham, 412-424.
Zsuzsanna Lipták, Open problems on prefix normal words, also in Dagstuhl Reports (2018) Vol. 8, Issue 7, 59-61.
CROSSREFS
Sequence in context: A233205 A158292 A141341 * A211385 A373194 A116910
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Mar 02 2014
EXTENSIONS
a(17)-a(33) from Lars Blomberg, Jun 16 2017
STATUS
approved