login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288853
Triangle read by rows: T(n,k) is the number of surjective linear mappings from an n-dimensional vector space over F_2 onto a k-dimensional vector space, n>=0, 0<=k<=n.
2
1, 1, 1, 1, 3, 6, 1, 7, 42, 168, 1, 15, 210, 2520, 20160, 1, 31, 930, 26040, 624960, 9999360, 1, 63, 3906, 234360, 13124160, 629959680, 20158709760, 1, 127, 16002, 1984248, 238109760, 26668293120, 2560156139520, 163849992929280, 1, 255, 64770, 16322040, 4047865920, 971487820800, 217613271859200, 41781748196966400, 5348063769211699200
OFFSET
0,5
COMMENTS
The (q = 2) analog of A008279.
A022166(m,k)*T(n,k) is the number of m X n matrices over F_2 that have rank k.
a(n) is the number of n X n matrices over F_2 in Green's R class containing A where rank(A) = k. - Geoffrey Critzer, Oct 05 2022
LINKS
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
Jeremy L. Martin, Lecture Notes on Algebraic Combinatorics, 2010-2023, Example 2.3.6.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
Wikipedia, Green's relations.
FORMULA
T(n,k) = Product_{j=0..k-1} (2^n - 2^j).
T(n,k) = A002884(k)*A022166(n,k).
Let g_m(x) = Sum_{n>=0} (2^m*x)^n/A005329(n) and e(x) = Sum_{n>=0} x^n/A005329(n). Then Sum_{k>=0} T(n,k)*x^k/A005329(k) = g_n(x)/e(x). - Geoffrey Critzer, Jun 01 2024
EXAMPLE
1;
1, 1;
1, 3, 6;
1, 7, 42, 168;
1, 15, 210, 2520, 20160;
1, 31, 930, 26040, 624960, 9999360;
...
MATHEMATICA
Table[Table[Product[q^n - q^i, {i, 0, k - 1}] /. q -> 2, {k, 0, n}], {n, 0, 8}] // Grid
CROSSREFS
Columns k=0-10 give: A000012, A000225, 6*A006095, 168*A006096, 20160*A006097, 9999360*A006110, 20158709760*A022189, 163849992929280*A022190, 5348063769211699200*A022191, 699612310033197642547200*A022192, 366440137299948128422802227200*A022193.
Main diagonal gives A002884.
Cf. A022166.
Sequence in context: A155830 A340310 A096602 * A296184 A290481 A259501
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jun 18 2017
STATUS
approved